Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuro Oncol ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507506

RESUMEN

BACKGROUND: H3 K27M-mutated gliomas were first described as a new grade 4 entity in the 2016 WHO classification. Current studies have focused on its typical appearance in children and young adults, increasing the need to better understand the prognostic factors and impact of surgery on adults. Here, we report a multicentric study of this entity in adults. METHODS: We included molecularly confirmed H3 K27M-mutated glioma cases in patients >18 years diagnosed between 2016 and 2022. Clinical, radiological, and surgical features were analyzed. Univariate and multivariate analyses were performed to identify prognostic factors. RESULTS: Among 70 patients with a mean age of 36.1 years, the median overall survival (OS) was 13.6 + 14 months. Gross-total resection was achieved in 14.3% of patients, whereas 30% had a subtotal resection and 54.3% a biopsy.Tumors located in telencephalon/diencephalon/myelencephalon were associated with a poorer OS, while a location in the mesencephalon/metencephalon showed a significantly longer OS (8.7 vs. 25.0 months, p=0.007). Preoperative Karnofsky Performance Score (KPS) < 80 showed a reduced OS (4.2 vs. 18 months, p=0.02). Furthermore, ATRX loss, found in 25.7%, was independently associated with an increased OS (31 vs. 8.3 months, p=0.0029). Notably, patients undergoing resection showed no survival benefit over biopsy (12 vs. 11 months, p=0.4006). CONCLUSION: The present study describes surgical features of H3 K27M-mutated glioma in adulthood in a large multicentric study. Our data reveal that ATRX status, location and KPS significantly impact OS in H3 K27M-mutated glioma. Importantly, our dataset indicates that resection does not offer a survival advantage over biopsy.

2.
Pediatr Surg Int ; 32(12): 1193-1200, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27651374

RESUMEN

PURPOSE: Fenofibrate (FEN) is known as a nuclear receptor activator which regulates many pathophysiological processes, such as oxidative stress, inflammation, and leukocyte endothelium interactions. Recent studies have demonstrated an anti-oxidant, anti-inflammatory, and anti-ischemic role of FEN in the attenuation of ischemia-reperfusion (IR) injury in the kidney, liver, brain, and heart. The purpose of the present study was to examine the effect of FEN on intestinal recovery and enterocyte turnover after intestinal IR injury in rats. METHODS: Male Sprague-Dawley rats were divided into four experimental groups: (1) sham rats underwent laparotomy, (2) sham-FEN rats underwent laparotomy and were treated with intraperitoneal (IP) FEN (20 mg/kg); (3) IR rats underwent occlusion of both the superior mesenteric artery and the portal vein for 30 min followed by 24 h of reperfusion, and (4) IR-FEN rats underwent IR and were treated with IP FEN immediately before abdominal closure. Intestinal structural changes, Park's injury score, enterocyte proliferation, and enterocyte apoptosis were determined 24 h following IR. The expression of Bax, Bcl-2, p-ERK, and caspase-3 in the intestinal mucosa was determined using real-time PCR, Western blot, and immunohistochemistry. RESULTS: Treatment with FEN resulted in a significant decrease in Park's injury score in jejunum (32 %) and ileum (33 %) compared to IR animals. IR-FEN rats also demonstrated a significant increase in mucosal weight in jejunum (23 %) and ileum (22 %), mucosal DNA (38 %) and protein (65 %) in jejunum, villus height in jejunum (17 %) and ileum (21 %), and crypt depth in ileum (14 %) compared to IR animals. IR-FEN rats also experienced significant proliferation rates as well as lower apoptotic indices in jejunum and ileum which was accompanied with higher Bcl-2 levels compared to IR animals. CONCLUSIONS: Treatment with fenofibrate prevents intestinal mucosal damage and stimulates intestinal epithelial cell turnover following intestinal IR in a rat model.


Asunto(s)
Fenofibrato/farmacología , Intestino Delgado/efectos de los fármacos , Daño por Reperfusión/prevención & control , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Modelos Animales de Enfermedad , Hipolipemiantes/farmacología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/fisiopatología , Intestino Delgado/fisiopatología , Masculino , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Daño por Reperfusión/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA