Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Autophagy ; 17(4): 855-871, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32286126

RESUMEN

Macroautophagy/autophagy cytoplasmic quality control pathways are required during neural development and are critical for the maintenance of functional neuronal populations in the adult brain. Robust evidence now exists that declining neuronal autophagy pathways contribute to human neurodegenerative diseases, including Parkinson disease (PD). Reliable and relevant human neuronal model systems are therefore needed to understand the biology of disease-vulnerable neural populations, to decipher the underlying causes of neurodegenerative disease, and to develop assays to test therapeutic interventions in vitro. Human induced pluripotent stem cell (hiPSC) neural model systems can meet this demand: they provide a renewable source of material for differentiation into regional neuronal sub-types for functional assays; they can be expanded to provide a platform for screening, and they can potentially be optimized for transplantation/neurorestorative therapy. So far, however, hiPSC differentiation protocols for the generation of ventral midbrain dopaminergic neurons (mDANs) - the predominant neuronal sub-type afflicted in PD - have been somewhat restricted by poor efficiency and/or suitability for functional and/or imaging-based in vitro assays. Here, we describe a reliable, monolayer differentiation protocol for the rapid and reproducible production of high numbers of mDANs from hiPSC in a format that is amenable for autophagy/mitophagy research. We characterize these cells with respect to neuronal differentiation and macroautophagy capability and describe qualitative and quantitative assays for the study of autophagy and mitophagy in these important cells.Abbreviations: AA: ascorbic acid; ATG: autophagy-related; BDNF: brain derived neurotrophic factor; CCCP: carbonyl cyanide m-chlorophenylhydrazone; dbcAMP: dibutyryl cAMP; DAN: dopaminergic neuron; DAPI: 4',6-diamidino-2-phenylindole; DAPT: N-[N-(3,5-difluorophenacetyl)-L-alanyl]-sphenylglycine; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco's modified eagle's medium; EB: embryoid body; ECAR: extracellular acidification rate; EGF: epidermal growth factor; FACS: fluorescence-activated cell sorting; FCCP: arbonyl cyanide p-triflouromethoxyphenylhydrazone; FGF: fibroblast growth factor; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GDNF: glia cell derived neurotrophic factor; hiPSC: human induced pluripotent stem cell; LAMP2A: lysosomal associated membrane protein 2A; LT-R: LysoTracker Red; MAP1LC3: microtubule associated protein 1 light chain 3; mDAN: midbrain dopaminergic neuron; MEF: mouse embryonic fibroblast; MT-GR: MitoTracker Green; MT-R: MitoTracker Red; NAS2: normal SNCA2; NEM: neuroprogenitor expansion media; NR4A2/NURR1: nuclear receptor subfamily group A member 2; OA: oligomycin and antimycin A; OCR: oxygen consumption rate; PD: Parkinson disease; SHH: sonic hedgehog signaling molecule; SNCA/α-synuclein: synuclein alpha; TH: tyrosine hydroxylase; VTN: vitronectin.


Asunto(s)
Autofagia , Técnicas de Cultivo de Célula , Neuronas Dopaminérgicas/citología , Células Madre Pluripotentes Inducidas/citología , Mitofagia , Autofagia/efectos de los fármacos , Autofagia/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/ultraestructura , Regulación de la Expresión Génica/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Mesencéfalo/citología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Mitofagia/genética , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/genética , Piridinas/farmacología , Pirimidinas/farmacología , Factores de Tiempo
2.
Biomaterials ; 61: 139-49, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26002787

RESUMEN

Brain Computer Interfaces (BCI) currently represent a field of intense research aimed both at understanding neural circuit physiology and at providing functional therapy for traumatic or degenerative neurological conditions. Due to its chemical inertness, biocompatibility and stability, diamond is currently being actively investigated as a potential substrate material for culturing cells and for use as the electrically active component of a neural sensor. Here we provide a protocol for the differentiation of mature, electrically active neurons on microcrystalline synthetic thin-film diamond substrates starting from undifferentiated pluripotent stem cells. Furthermore, we investigate the optimal characteristics of the diamond microstructure for long-term neuronal sustainability. We also analyze the effect of boron as a dopant for such a culture. We found that the diamond crystalline structure has a significant influence on the neuronal culture unlike the boron doping. Specifically, small diamond microcrystals promote higher neurite density formation. We find that boron incorporated into the diamond does not influence the neurite density and has no deleterious effect on cell survival.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Nanodiamantes/química , Neuronas/citología , Neuronas/fisiología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Materiales Biocompatibles/síntesis química , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Humanos , Ensayo de Materiales , Nanodiamantes/ultraestructura , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia , Tamaño de la Partícula , Propiedades de Superficie
3.
Elife ; 2: e01197, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24347544

RESUMEN

Bone morphogenic protein (BMP) signalling contributes towards maintenance of pluripotency and favours mesodermal over neural fates upon differentiation, but the mechanisms by which BMP controls differentiation are not well understood. We report that BMP regulates differentiation by blocking downregulation of Cdh1, an event that accompanies the earliest stages of neural and mesodermal differentiation. We find that loss of Cdh1 is a limiting requirement for differentiation of pluripotent cells, and that experimental suppression of Cdh1 activity rescues the BMP-imposed block to differentiation. We further show that BMP acts prior to and independently of Cdh1 to prime pluripotent cells for mesoderm differentiation, thus helping to reinforce the block to neural differentiation. We conclude that differentiation depends not only on exposure to appropriate extrinsic cues but also on morphogenetic events that control receptivity to those differentiation cues, and we explain how a key pluripotency signal, BMP, feeds into this control mechanism. DOI: http://dx.doi.org/10.7554/eLife.01197.001.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Cadherinas/metabolismo , Diferenciación Celular , Transducción de Señal , Humanos , Proteína 1 Inhibidora de la Diferenciación/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA