Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 155: 106436, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36848800

RESUMEN

Protein folding is a complex physicochemical process whereby a polymer of amino acids samples numerous conformations in its unfolded state before settling on an essentially unique native three-dimensional (3D) structure. To understand this process, several theoretical studies have used a set of 3D structures, identified different structural parameters, and analyzed their relationships using the natural logarithmic protein folding rate (ln(kf)). Unfortunately, these structural parameters are specific to a small set of proteins that are not capable of accurately predicting ln(kf) for both two-state (TS) and non-two-state (NTS) proteins. To overcome the limitations of the statistical approach, a few machine learning (ML)-based models have been proposed using limited training data. However, none of these methods can explain plausible folding mechanisms. In this study, we evaluated the predictive capabilities of ten different ML algorithms using eight different structural parameters and five different network centrality measures based on newly constructed datasets. In comparison to the other nine regressors, support vector machine was found to be the most appropriate for predicting ln(kf) with mean absolute differences of 1.856, 1.55, and 1.745 for the TS, NTS, and combined datasets, respectively. Furthermore, combining structural parameters and network centrality measures improves the prediction performance compared to individual parameters, indicating that multiple factors are involved in the folding process.


Asunto(s)
Pliegue de Proteína , Proteínas , Proteínas/química , Algoritmos , Aminoácidos/química , Modelos Teóricos
2.
Curr Med Chem ; 29(2): 235-250, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34477504

RESUMEN

Acetylation on lysine residues is considered one of the most potent protein post-translational modifications, owing to its crucial role in cellular metabolism and regulatory processes. Recent advances in experimental techniques have unraveled several lysine acetylation substrates and sites. However, owing to its cost-ineffectiveness, cumbersome process, time-consumption, and labor-intensiveness, several efforts have been geared towards the development of computational tools. In particular, machine learning (ML)-based approaches hold great promise in the rapid discovery of lysine acetylation modification sites, which could be witnessed by the growing number of prediction tools. Recently, several ML methods have been developed for the prediction of lysine acetylation sites, owing to their time- and cost-effectiveness. In this review, we present a complete survey of the state-of-the-art ML predictors for lysine acetylation. We discuss a variety of key aspects for developing a successful predictor, including operating ML algorithms, feature selection methods, validation techniques, and software utility. Initially, we review lysine acetylation site databases, current ML approaches, working principles, and their performances. Lastly, we discuss the shortcomings and future directions of ML approaches in the prediction of lysine acetylation sites. This review may act as a useful guide for the experimentalists in choosing the right ML tool for their research. Moreover, it may help bioinformaticians in the development of more accurate and advanced MLbased predictors in protein research.


Asunto(s)
Biología Computacional , Lisina , Acetilación , Humanos , Aprendizaje Automático , Procesamiento Proteico-Postraduccional
3.
Stem Cells Int ; 2021: 8444599, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539792

RESUMEN

Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) have been studied for their application to manage various neurological diseases, owing to their anti-inflammatory, immunomodulatory, paracrine, and antiapoptotic ability, as well as their homing capacity to specific regions of brain injury. Among mesenchymal stem cells, such as BM-MSCs, adipose-derived MSCs, and umbilical cord MSCs, BM-MSCs have many merits as cell therapeutic agents based on their widespread availability and relatively easy attainability and in vitro handling. For stem cell-based therapy with BM-MSCs, it is essential to perform ex vivo expansion as low numbers of MSCs are obtained in bone marrow aspirates. Depending on timing, before hBM-MSC transplantation into patients, after detaching them from the culture dish, cell viability, deformability, cell size, and membrane fluidity are decreased, whereas reactive oxygen species generation, lipid peroxidation, and cytosolic vacuoles are increased. Thus, the quality and freshness of hBM-MSCs decrease over time after detachment from the culture dish. Especially, for neurological disease cell therapy, the deformability of BM-MSCs is particularly important in the brain for the development of microvessels. As studies on the traditional characteristics of hBM-MSCs before transplantation into the brain are very limited, omics and machine learning approaches are needed to evaluate cell conditions with indepth and comprehensive analyses. Here, we provide an overview of hBM-MSCs, the application of these cells to various neurological diseases, and improvements in their quality and freshness based on integrated omics after detachment from the culture dish for successful cell therapy.

4.
Nanomaterials (Basel) ; 11(9)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34578701

RESUMEN

Nanoparticles (NPs) in biomedical applications have benefits owing to their small size. However, their intricate and sensitive nature makes an evaluation of the adverse effects of NPs on health necessary and challenging. Since there are limitations to conventional toxicological methods and omics analyses provide a more comprehensive molecular profiling of multifactorial biological systems, omics approaches are necessary to evaluate nanotoxicity. Compared to a single omics layer, integrated omics across multiple omics layers provides more sensitive and comprehensive details on NP-induced toxicity based on network integration analysis. As multi-omics data are heterogeneous and massive, computational methods such as machine learning (ML) have been applied for investigating correlation among each omics. This integration of omics and ML approaches will be helpful for analyzing nanotoxicity. To that end, mechanobiology has been applied for evaluating the biophysical changes in NPs by measuring the traction force and rigidity sensing in NP-treated cells using a sub-elastomeric pillar. Therefore, integrated omics approaches are suitable for elucidating mechanobiological effects exerted by NPs. These technologies will be valuable for expanding the safety evaluations of NPs. Here, we review the integration of omics, ML, and mechanobiology for evaluating nanotoxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...