Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Food Prot ; 87(7): 100292, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718984

RESUMEN

Currently, there is limited knowledge on the survival of bacteria on surfaces during postharvest handling of dry products such as onions. Extended survival of microorganisms, coupled with a lack of established and regular, validated cleaning or sanitation methods could enable cross-contamination of these products. The aim of the study was to evaluate the survival of a potential surrogate, Enterococcus faecium, and Salmonella enterica on typical onion handling surfaces, polyurethane (PU), and stainless steel (SS), under low relative humidity. The influence of onion extract on the survival of E. faecium and Salmonella on PU and SS was also investigated. Rifampin-resistant E. faecium NRRL B-2354 and a five-strain cocktail of Salmonella suspended in 0.1% peptone or onion extract were separately inoculated onto PU and SS coupons (2 × 2 cm), at high, moderate, or low (7, 5, or 3 log CFU/cm2) levels. The inoculated surfaces were stored at ∼34% relative humidity and 21°C for up to 84 days. Triplicate samples were enumerated at regular intervals in replicate trials. Samples were enriched when populations fell below the limit of detection by plating (0.48 log CFU/cm2). Scanning electron microscopy was used to observe the cell distribution on the coupons. Reductions of E. faecium of less than ∼2 log were observed on PU and SS over 12 weeks at all inoculum levels and with both inoculum carriers. In 0.1% peptone, Salmonella populations declined by 2 to 3 log over 12 weeks at the high and moderate inoculum levels; at the low inoculum level, Salmonella could not be recovered by enrichment at 84 days. Survival of E. faecium and Salmonella was significantly (P < 0.05) enhanced over 84 days of storage when suspended in onion extract, where cells were covered by a layer of onion extract. E. faecium might have utility as a conservative surrogate for Salmonella when evaluating microbial survival on dry food-contact surfaces.

2.
Foods ; 13(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38672914

RESUMEN

Human milk provides bioactive compounds such as milk fat globules (MFGs), which promote brain development, modulate the immune system, and hold antimicrobial properties. To ensure microbiological safety, donor milk banks apply heat treatments. This study compares the effects of heat treatments and homogenization on MFG's physicochemical properties, bioactivity, and bioavailability. Vat pasteurization (Vat-PT), retort (RTR), and ultra-high temperature (UHT) were performed with or without homogenization. UHT, RTR, and homogenization increased the colloidal dispersion of globules, as indicated by increased zeta potential. The RTR treatment completely inactivated xanthine oxidase activity (a marker of MFG bioactivity), whereas UHT reduced its activity by 93%. Interestingly, Vat-PT resulted in less damage, with 28% activity retention. Sialic acid, an important compound for brain health, was unaffected by processing. Importantly, homogenization increased the in vitro lipolysis of MFG, suggesting that this treatment could increase the digestibility of MFG. In terms of color, homogenization led to higher L* values, indicating increased whiteness due to finer dispersion of the fat and casein micelles (and thus greater light scattering), whereas UHT and RTR increased b* values associated with Maillard reactions. This study highlights the nuanced effects of processing conditions on MFG properties, emphasizing the retention of native characteristics in Vat-PT-treated human milk.

3.
ACS Sens ; 9(2): 912-922, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38320289

RESUMEN

This study presents a breakthrough in the field of onsite bacterial detection, offering an innovative, rapid, and ultrasensitive colorimetric biosensor for the detection of Escherichia coli (E. coli) O157:H7, using chemically modified melamine foam (MF). Different from conventional platforms, such as 96-well plates and fiber-based membranes, the modified MF features a macroporous reticulated three-dimensional (3D) framework structure, allowing fast and free movement of large biomolecules and bacteria cells through the MF structure in every direction and ensuring good accessibility of entire active binding sites of the framework structure with the target bacteria, which significantly increased sensitive and volume-responsive detection of whole-cell bacteria. The biosensing platform requires less than 1.5 h to complete the quantitative detection with a sensitivity of 10 cfu/mL, discernible by the naked eye, and an enhanced sensitivity of 5 cfu/mL with the help of a smartphone. Following a short enrichment period of 1 h, the sensitivity was further amplified to 2 cfu/mL. The biosensor material is volume responsive, making the biosensing platform sensitivity increase as the volume of the sample increases, and is highly suitable for testing large-volume fluid samples. This novel material paves the way for the development of volume-flexible biosensing platforms for the record-fast, onsite, selective, and ultrasensitive detection of various pathogenic bacteria in real-world applications.


Asunto(s)
Técnicas Biosensibles , Escherichia coli O157 , Colorimetría , Técnicas Biosensibles/métodos
4.
ACS Appl Bio Mater ; 7(3): 1842-1851, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38416807

RESUMEN

The growing concerns regarding foodborne illnesses related to fresh produce accentuate the necessity for innovative material solutions, particularly on surfaces that come into close contact with foods. This study introduces a sustainable, efficient, and removable antimicrobial and antifouling coating ideally suited for hydrophobic food-contact surfaces such as low-density polyethylene (LDPE). Developed through a crosslinking reaction involving tannic acid, gelatin, and soy protein hydrolysate, these coatings exhibit proper stability in aqueous washing solutions and effectively combat bacterial contamination and prevent biofilm formation. The unique surface architecture promotes the formation of halamine structures, enhancing antimicrobial efficacy with a rapid contact killing effect and reducing microbial contamination by up to 5 log10 cfu·cm-2 against both Escherichia coli (Gram-negative) and Listeria innocua (Gram-positive). Notably, the coatings are designed for at least five recharging cycles under mild conditions (pH6, 20 ppm free active chlorine) and can be easily removed with hot water or steam to refresh the depositions. This removal process not only conveniently aligns with existing sanitation protocols in the fresh produce industry but also facilitates the complete eradication of potential developed biofilms, outperforming uncoated LDPE coupons. Overall, these coatings represent sustainable, cost-effective, and practical advancements in food safety and are promising candidates for widespread adoption in food processing environments.


Asunto(s)
Antiinfecciosos , Incrustaciones Biológicas , Polifenoles , Polietileno , Antiinfecciosos/farmacología , Povidona , Escherichia coli
5.
Food Funct ; 15(6): 3087-3097, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38415776

RESUMEN

Edible filamentous fungi (FF) are considered sustainable food materials given their rich nutrient profile and low carbon and water footprints during production. The current study evaluated FF biomass as a natural encapsulation system for exogenous bioactive compounds and as a model system to investigate the complex food matrix-micronutrient interactions during in vitro digestion. Our objective was to compare the fungal pellet, as a multicellular encapsulation system, with single yeast cell-based carriers in terms of loading and release of curcumin, a model compound. The results suggest that the curcumin encapsulation efficiency was similar in single yeast cells and fungal hyphal cells. A vacuum treatment used to facilitate the infusion of curcumin into yeast or fungal cells also enabled rapid internalization of yeast cells into the fungal pellet matrix. Compared to the single-cell encapsulation system, the multicellular systems modified the release kinetics of curcumin during in vitro digestion by eliminating the initial rapid release and reducing the overall release rate of curcumin in the small intestinal phase. These results provide a deeper understanding of the effect of natural edible structures on the bioaccessibility of micronutrients, and demonstrate the potential of using FF biomass as functional food materials.


Asunto(s)
Curcumina , Levadura Seca , Saccharomyces cerevisiae , Curcumina/farmacología , Hongos , Alimentos Funcionales , Micronutrientes
6.
Food Res Int ; 173(Pt 2): 113384, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803721

RESUMEN

Despite the growing demand and interest in 3D printing for food manufacturing, predicting printability of food-grade materials based on biopolymer composition and rheological properties is a significant challenge. This study developed two image-based printability assessment metrics: printed filaments' width and roughness and used these metrics to evaluate the printability of hydrogel-based food inks using response surface methodology (RSM) with regression analysis and machine learning. Rheological and compositional properties of food grade inks formulated using low-methoxyl pectin (LMP) and cellulose nanocrystals (CNC) with different ionic crosslinking densities were used as predictors of printability. RSM and linear regression showed good predictability of rheological properties based on formulation parameters but could not predict the printability metrics. For a machine learning based prediction model, the printability metrics were binarized with pre-specified thresholds and random forest classifiers were trained to predict the filament width and roughness labels, as well as the overall printability of the inks using formulation and rheological parameters. Without including formulation parameters, the models trained on rheological measurements alone were able to achieve high prediction accuracy: 82% for the width and roughness labels and 88% for the overall printability label, demonstrating the potential to predict printability of the polysaccharide inks developed in this study and to possibly generalize the models to food inks with different compositions.


Asunto(s)
Tinta , Polisacáridos , Celulosa/química , Alimentos , Impresión Tridimensional
7.
Lab Chip ; 23(23): 5009-5017, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37905598

RESUMEN

α-Amanitin (AMN) is one of the deadliest toxins from mushrooms, present in the deadly mushroom species Amanita phalloides. It is a bicyclic octapeptide and represents up to 40% of the amatoxins in mushrooms, damaging the liver and kidneys. Current methods of detecting amatoxins are time-consuming and require the use of expensive equipment. A novel label-free electrochemical immunosensor was successfully developed for rapid detection of α-amanitin, which was fabricated by immobilization of anti-α-amanitin antibodies onto a functionalized cellulose nanofibrous membrane-modified carbon screen-printed electrode. An oxidation peak of the captured amanitin on the tethered antibodies was observed at 0.45 V. The performance of the nanofibrous membrane on the electrode and necessary fabrication steps were investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Due to its unique structural features and properties such as high specific surface area and microporous structure, the nanofibrous membrane as an immunosensor matrix for antibody tethering improved the electrochemical performance of the immunosensor by more than 3 times compared with cast membranes. Under the optimal conditions, the assembled immunosensor exhibited high sensitivity toward α-amanitin detection in the range of 0.009-2 ng mL-1 with a limit of detection of 8.3 pg mL-1. The results clearly indicate that the fabricated nanofiber-based-immunosensor is suitable for point-of-care detection of lethal α-amanitin in human urine without any pretreatment within 30 min.


Asunto(s)
Técnicas Biosensibles , Nanofibras , Humanos , Alfa-Amanitina , Celulosa , Sistemas de Atención de Punto , Inmunoensayo/métodos , Amanitinas/química , Amanitinas/orina , Anticuerpos , Técnicas Electroquímicas/métodos
8.
Food Microbiol ; 115: 104340, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567641

RESUMEN

Bacterial transfer during postharvest handling of fresh produce provides a mechanism for spreading pathogens, but risk factors in dry environments are poorly understood. The aim of the study was to investigate factors influencing bacterial transfer between yellow onions (Allium cepa) and polyurethane (PU) or stainless steel (SS) under dry conditions. Rifampin-resistant Enterococcus faecium NRRL B-2354 or a five-strain cocktail of Salmonella was inoculated onto onion skin or PU surfaces at high or moderate levels using peptone, onion extract, or soil water as inoculum carriers. Transfer from inoculated to uninoculated surfaces was conducted using a texture analyzer to control force, time, and number of contacts. Transfer rates (ratio of recipient surface to donor surface populations) of E. faecium (4-5%) were significantly higher than those of Salmonella (0.5-0.6%) at the high (7 log CFU/cm2) but not moderate (5 log CFU/cm2) inoculum levels. Significantly higher populations of E. faecium transferred from onion to PU than from PU to onion. The transfer rates of E. faecium were impacted by inoculum carrier (61% [onion extract], 1.6% [peptone], and 0.31% [soil]) but not by inoculation level or recipient surface (PU versus SS). Bacterial transfer during dry onion handling is significantly dependent on bacterial species, inoculation levels, inoculum carrier, and transfer direction.


Asunto(s)
Enterococcus faecium , Salmonella enterica , Cebollas , Recuento de Colonia Microbiana , Peptonas , Microbiología de Alimentos , Salmonella , Suelo , Extractos Vegetales , Manipulación de Alimentos
9.
World J Microbiol Biotechnol ; 39(10): 271, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37541980

RESUMEN

Sherry wine is a pale-yellowish dry wine produced in Southern-Spain which features are mainly due to biological aging when the metabolism of biofilm-forming yeasts (flor yeasts) consumes ethanol (and other non-fermentable carbon sources) from a previous alcoholic fermentation, and produces volatile compounds such as acetaldehyde. To start aging and maintain the wine stability, a high alcohol content is required, which is achieved by the previous fermentation or by adding ethanol (fortification). Here, an alternative method is proposed which aims to produce a more economic, distinctive Sherry wine without fortification. For this, a flor yeast has been pre-acclimatized to glycerol consumption against ethanol, and later confined in a fungal-based immobilization system known as "microbial biocapsules", to facilitate its inoculum. Once aged, the wines produced using biocapsules and free yeasts (the conventional method) exhibited chemical differences in terms of acidity and volatile concentrations. These differences were evaluated positively by a sensory panel. Pre-acclimatization of flor yeasts to glycerol consumption was not successful but when cells were immobilized in fungal pellets, ethanol consumption was lower. We believe that immobilization of flor yeasts in microbial biocapsules is an economic technique that can be used to produce high quality differentiated Sherry wines.


Asunto(s)
Saccharomyces cerevisiae , Vino , Saccharomyces cerevisiae/metabolismo , Vino/microbiología , Glicerol/metabolismo , Acetaldehído/análisis , Acetaldehído/metabolismo , Etanol/metabolismo , Fermentación
10.
Appl Microbiol Biotechnol ; 107(18): 5715-5726, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37490127

RESUMEN

Immobilized yeast cells are used industrially in winemaking processes such as sparkling wine and Sherry wine production. Here, a novel approach has been explored for the infusion and immobilization of yeast cells into filamentous fungal pellets, which serve as a porous natural material. This was accomplished through vacuum application to force the yeast cells towards the core of the fungal pellets followed by culture in YPD medium to promote their growth from the interior. This method represents an improved variation of a previous approach for the assembly of "yeast biocapsules," which entailed the co-culture of both fungal and yeast cells in the same medium. A comparison was made between both techniques in terms of biocapsule productivity, cell retention capacity, and cell biological activity through an alcoholic fermentation of a grape must. The results indicated a substantial increase in biocapsule productivity (37.40-fold), higher cell retention within the biocapsules (threefold), and reduction in cell leakage during fermentation (twofold). Although the majority of the chemical and sensory variables measured in the produced wine did not exhibit notable differences from those produced utilizing suspended yeast cells (conventional method), some differences (such as herbaceous and toasted smells, acidity, bitterness, and persistence) were perceived and wines positively evaluated by the sensory panel. As the immobilized cells remain functional and the encapsulation technique can be expanded to other microorganisms, it creates potential for additional industrial uses like biofuel, health applications, microbe encapsulation and delivery, bioremediation, and pharmacy. KEY POINTS: • New approach improves biocapsule productivity and cell retention. • Immobilized yeast remains functional in fermentation. • Wine made with immobilized yeast had positive sensory differences.


Asunto(s)
Saccharomyces cerevisiae , Vino , Saccharomyces cerevisiae/química , Encapsulación Celular , Vacio , Fermentación , Vino/microbiología
11.
Water Res ; 242: 120258, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37390659

RESUMEN

Rapid pathogen detection in food and agricultural water is essential for ensuring food safety and public health. However, complex and noisy environmental background matrices delay the identification of pathogens and require highly trained personnel. Here, we present an AI-biosensing framework for accelerated and automated pathogen detection in various water samples, from liquid food to agricultural water. A deep learning model was used to identify and quantify target bacteria based on their microscopic patterns generated by specific interactions with bacteriophages. The model was trained on augmented datasets to maximize data efficiency, using input images of selected bacterial species, and then fine-tuned on a mixed culture. Model inference was performed on real-world water samples containing environmental noises unseen during model training. Overall, our AI model trained solely on lab-cultured bacteria achieved rapid (< 5.5 h) prediction with 80-100% accuracy on the real-world water samples, demonstrating its ability to generalize to unseen data. Our study highlights the potential applications in microbial water quality monitoring during food and agricultural processes.


Asunto(s)
Bacteriófagos , Técnicas Biosensibles , Bacterias , Técnicas Biosensibles/métodos
12.
ACS Appl Bio Mater ; 6(6): 2459-2467, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37272898

RESUMEN

The emerging infectious diseases have created one of the major practical needs to develop active packaging materials with durable antibacterial and antiviral properties for the food industry. To meet this demand, the development of new technologies applicable to food contact surfaces is highly desired but challenging. The recent discovery of the photoactive properties of vitamin K (VK) derivatives has raised great expectations as promising candidates in functional film development due to the generation of biocidal reactive oxygen species (ROS) by these compounds. Inspired by the excellent photoactivity of one of the light-stable VK derivatives, menadione (VK3), under visible daylight irradiation, we demonstrate a protocol for the fabrication of daylight-mediated biocidal packaging materials by incorporating VK3 into a poly (ethylene-co-vinyl acetate) (EVA) matrix. The VK3 (i.e., 1-5% w/w) incorporated EVA films successfully demonstrated the production of ROS and antibacterial and antiviral performance against Escherichia coli, Listeria innocua, and T7 bacteriophage, respectively, under daylight exposure conditions. The results revealed that the addition of a proper percentage of VK3 significantly enhanced the ROS productivity of the films and created a novel daylight-induced microbial killing performance on the films. The biocidal functions of the films are long-lasting and rechargeable when exposed to light repeatedly, making them a viable contender for replacing currently available conventional packaging films.


Asunto(s)
Embalaje de Alimentos , Polímeros , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Antivirales/farmacología
14.
Food Res Int ; 168: 112758, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37120209

RESUMEN

This study develops a novel low-cost microbial delivery system by transforming common food materials such as apple tissue into a 3D scaffold. Apple tissue scaffold was constructed by decellularization of intact tissue using a minimal amount of sodium dodecyl sulfate (0.5 % w/v). Vacuum-assisted infusion of model probiotic Lactobacillus cells led to a high encapsulation yield of probiotic cells (1010 CFU/g of scaffold) in 3D scaffolds on a wet basis. The bio-polymer coated 3D scaffolds with infused cells significantly enhanced the survivability of infused probiotic cells during simulated gastric and intestinal digestions. In addition, imaging and plate counting results validate the growth of the infused cells in the 3D scaffold after 1-2 days of fermentation in MRS media, while cells without infusion in the scaffold had limited attachment with the intact apple tissue. Overall, these results highlight the potential of the apple tissue-derived 3D scaffold to deliver probiotic cells and include the biochemical compositions to support the growth of delivered microbial cells in the colon.


Asunto(s)
Malus , Probióticos , Lactobacillus , Tracto Gastrointestinal , Colon , Probióticos/química
15.
Curr Opin Biotechnol ; 79: 102871, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36621220

RESUMEN

Microbial contamination of food products is a significant challenge that impacts food safety and quality. This review focuses on bio-based technologies for enhancing the decontamination of raw foods during postharvest processing, preventing cross-contamination, and rapidly detecting microbial risks. The bio-based antimicrobial compositions include bio-based antimicrobial delivery systems and coatings. The antimicrobial delivery systems are developed using cell-based carriers, microbubbles, and lipid-based colloidal particles. The antimicrobial coatings are engineered by incorporating biopolymers with conventional antimicrobials or cell-based antimicrobial carriers. The bio-based sensing approaches focus on replacing antibodies with more stable and cost-effective bio-receptors, including antimicrobial peptides, bacteriophages, DNAzymes, and engineered liposomes. Together, these approaches can reduce microbial contamination risks and enhance the in-situ detection of microbes.


Asunto(s)
Antiinfecciosos , Bacteriófagos , Inocuidad de los Alimentos , Antiinfecciosos/química
16.
Toxics ; 11(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36668793

RESUMEN

Glyphosate is a non-selective herbicide. Although glyphosate is not acutely toxic, the intake of glyphosate-based herbicides has caused many accidents. Some studies have suggested that surfactants might be the cause. The purpose of this study was to compare the toxicokinetic (TK) properties of glyphosate according to different vehicles in rats. Glyphosate (1%) was dissolved in distilled water (DW), polyoxyethylene tallow amine (POEA), and Tween 20. After a single oral treatment of glyphosate (50 mg/kg), blood was collected at time intervals, and glyphosate concentrations in the target organ (liver and kidney) were determined 24 h after final blood collection. All samples were analyzed using LC-MS/MS. The TK parameters of glyphosate were similar in the DW and Tween 20 groups. However, there were significant differences in Tmax and volume of distribution (Vd) between the DW and POEA group (p < 0.05). Glyphosate was absorbed about 10 times faster in POEA group rather than DW, and exhibited a higher distribution. However, other important TK parameters of T1/2, AUC, and Cmax were not statistically different among the different vehicle groups. Although glyphosate concentration in the liver was significantly higher in the POEA group than in the DW group, there was no significant difference in the kidney. These results indicate that the toxicokinetics of glyphosate are not significantly affected by POEA. It can be concluded that POEA toxicity itself can be attributed to the acute toxicity of glyphosate-containing products.

17.
Appl Environ Microbiol ; 89(1): e0182822, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36533914

RESUMEN

In assessing food microbial safety, the presence of Escherichia coli is a critical indicator of fecal contamination. However, conventional detection methods require the isolation of bacterial macrocolonies for biochemical or genetic characterization, which takes a few days and is labor-intensive. In this study, we show that the real-time object detection and classification algorithm You Only Look Once version 4 (YOLOv4) can accurately identify the presence of E. coli at the microcolony stage after a 3-h cultivation. Integrating with phase-contrast microscopic imaging, YOLOv4 discriminated E. coli from seven other common foodborne bacterial species with an average precision of 94%. This approach also enabled the rapid quantification of E. coli concentrations over 3 orders of magnitude with an R2 of 0.995. For romaine lettuce spiked with E. coli (10 to 103 CFU/g), the trained YOLOv4 detector had a false-negative rate of less than 10%. This approach accelerates analysis and avoids manual result determination, which has the potential to be applied as a rapid and user-friendly bacterial sensing approach in food industries. IMPORTANCE A simple, cost-effective, and rapid method is desired to identify potential pathogen contamination in food products and thus prevent foodborne illnesses and outbreaks. This study combined artificial intelligence (AI) and optical imaging to detect bacteria at the microcolony stage within 3 h of inoculation. This approach eliminates the need for time-consuming culture-based colony isolation and resource-intensive molecular approaches for bacterial identification. The approach developed in this study is broadly applicable for the identification of diverse bacterial species. In addition, this approach can be implemented in resource-limited areas, as it does not require expensive instruments and significantly trained human resources. This AI-assisted detection not only achieves high accuracy in bacterial classification but also provides the potential for automated bacterial detection, reducing labor workloads in food industries, environmental monitoring, and clinical settings.


Asunto(s)
Inteligencia Artificial , Escherichia coli , Humanos , Bacterias , Inocuidad de los Alimentos , Imagen Óptica , Microbiología de Alimentos , Recuento de Colonia Microbiana , Contaminación de Alimentos/análisis
18.
Biomolecules ; 12(11)2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36421711

RESUMEN

The use of fetal bovine serum (FBS) and the price of cell culture media are the key constraints for developing serum-free cost-effective media. This study aims to replace or reduce the typical 10% serum application in fish cell culture media by applying protein hydrolysates from insects and marine invertebrate species for the growth of Zebrafish embryonic stem cells (ESC) as the model organism. Protein hydrolysates were produced from black soldier flies (BSF), crickets, oysters, mussels, and lugworms with a high protein content, suitable functional properties, and adequate amino-acid composition, with the degree of hydrolysis from 18.24 to 33.52%. Protein hydrolysates at low concentrations from 0.001 to 0.1 mg/mL in combination with 1 and 2.5% serums significantly increased cell growth compared to the control groups (5 and 10% serums) (p < 0.05). All protein hydrolysates with concentrations of 1 and 10 mg/mL were found to be toxic to cells and significantly reduced cell growth and performance (p < 0.05). However, except for crickets, all the hydrolysates were able to restore or significantly increase cell growth and viability with 50% less serum at concentrations of 0.001, 0.01, and 0.1 mg/mL. Although cell growth was enhanced at lower concentrations of protein hydrolysates, the cell morphology was altered due to the lack of serum. The lactate dehydrogenase (LDH) activity results indicated that BSF and lugworm hydrolysates did not alter the cell membrane. In addition, light and fluorescence imaging revealed that the cell morphological features were comparable to those of the 10% serum control group. Overall, lugworm and BSF hydrolysates reduced the serum by up to 90% while preserving excellent cell health.


Asunto(s)
Hidrolisados de Proteína , Albúmina Sérica Bovina , Animales , Hidrolisados de Proteína/farmacología , Línea Celular , Técnicas de Cultivo de Célula/métodos , Pez Cebra , Medio de Cultivo Libre de Suero/farmacología , Invertebrados , Insectos
19.
Foods ; 11(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36230217

RESUMEN

The growth and activity of adherent cells can be enabled or enhanced through attachment to a solid surface. For food and beverage production processes, these solid supports should be food-grade, low-cost, and biocompatible with the cell of interest. Solid supports that are edible can be a part of the final product, thus simplifying downstream operations in the production of fermented beverages and lab grown meat. We provide proof of concept that edible filamentous fungal pellets can function as a solid support by assessing the attachment and growth of two model cell types: yeast, and myoblast cells. The filamentous fungus Aspergillus oryzae was cultured to produce pellets with 0.9 mm diameter. These fugal pellets were inactivated by heat or chemical methods and characterized physicochemically. Chemically inactivated pellets had the lowest dry mass and were the most hydrophobic. Scanning electron microscope images showed that both yeast and myoblast cells naturally adhered to the fungal pellets. Over 48 h of incubation, immobilized yeast increased five-fold on active pellets and six-fold on heat-inactivated pellets. Myoblast cells proliferated best on heat-treated pellets, where viable cell activity increased almost two-fold, whereas on chemically inactivated pellets myoblasts did not increase in the cell mass. These results support the use of filamentous fungi as a novel cell immobilization biomaterial for food technology applications.

20.
Front Oncol ; 12: 972323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212452

RESUMEN

In leukemia, a distinct subpopulation of cancer-initiating cells called leukemia stem cells (LSCs) is believed to drive population expansion and tumor growth. Failing to eliminate LSCs may result in disease relapse regardless of the amount of non-LSCs destroyed. The first step in targeting and eliminating LSCs is to identify and characterize them. Acute precursor B lymphoblastic leukemia (B-ALL) cells derived from patients were incubated with fluorescent glucose analog 2-(N-(7-Nitrobenz-2-oxa-1, 3-diazol-4-yl) Amino)-2-Deoxyglucose (NBDG) and sorted based on NBDG uptake. Cell subpopulations defined by glucose uptake were then serially transplanted into mice and evaluated for leukemia initiating capacity. Gene expression profiles of these cells were characterized using RNA-Sequencing (RNA-Seq). A distinct population of NBDG-low cells was identified in patient B-ALL samples. These cells are a small population (1.92% of the entire leukemia population), have lower HLA expression, and are smaller in size (4.0 to 7.0 µm) than the rest of the leukemia population. All mice transplanted with NBDG-low cells developed leukemia between 5 and 14 weeks, while those transplanted with NBDG-high cells did not develop leukemia (p ≤ 0.0001-0.002). Serial transplantation of the NBDG-low mouse model resulted in successful leukemia development. NBDG-medium (NBDG-med) populations also developed leukemia. Interestingly, comprehensive molecular characterization of NBDG-low and NBDG-med cells from patient-derived xenograft (PDX) models using RNA-Seq revealed a distinct profile of 2,162 differentially-expressed transcripts (DETs) (p<0.05) with 70.6% down-regulated in NBDG-low cells. Hierarchical clustering of DETs showed distinct segregation of NBDG-low from NBDG-med and NBDG-high groups with marked transcription expression alterations in the NBDG-low group consistent with cancer survival. In conclusion, A unique subpopulation of cells with low glucose uptake (NBDG-low) in B-ALL was discovered. These cells, despite their quiescence characteristics, once transplanted in mice, showed potent leukemia initiating capacity. Although NBDG-med cells also initiated leukemia, gene expression profiling revealed a distinct signature that clearly distinguishes NBDG-low cells from NBDG-med and the rest of the leukemia populations. These results suggest that NBDG-low cells may represent quiescent LSCs. These cells can be activated in the appropriate environment in vivo, showing leukemia initiating capacity. Our study provides insight into the biologic mechanisms of B-ALL initiation and survival.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...