Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
1.
J Psychiatr Res ; 175: 170-182, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38735262

RESUMEN

BACKGROUND: Ending a romantic relationship is one of the most painful losses an adult experience. Neuroimaging studies suggest that there is a neuropsychological link between breakup experiences and bereaved individuals, and that specific prefrontal regions are involved. The aim of this study was to determine whether enhancement of left DLPFC and right VLPFC activity with a novel intensified anodal transcranial direct current stimulation protocol reduces core symptoms of love trauma syndrome (LTS) and improves treatment-related variables. METHODS: In this randomized, sham-controlled, single-blind parallel trial, we assessed the efficacy of an intensified anodal stimulation protocol (20 min, twice-daily sessions with 20 min intervals, 5 consecutive days) with two montages (left DLPFC vs right VLPFC) to reduce love trauma symptoms. 36 participants with love trauma syndrome were randomized in three tDCS condition (left DLPFC, right VLPFC, sham stimulation). LTS symptoms, treatment-related outcome variables (depressive state, anxiety, emotion regulation, positive and negative affect), and cognitive functions were assessed before, right after, and one month after intervention. RESULTS: Both DLPFC and VLPFC protocols significantly reduced LTS symptoms, and improved depressive state and anxiety after the intervention, as compared to the sham group. The improving effect of the DLPFC protocol on love trauma syndrome was significantly larger than that of the VLPFC protocol. For emotion regulation and positive and negative affect, improved regulation of emotions and positive affect and reduced negative affect were revealed after intervention in the two real stimulation conditions compared to the sham. For cognitive functions, no significant difference was observed between the groups, but again a positive effect of intervention within groups in the real stimulation conditions (DLPFC and VLPFC) was found for most components of the cognitive tasks. CONCLUSIONS: Enhancement of left DLPFC and right VLPFC activity with intensified stimulation improves LTS symptoms and treatment-related variables. For LTS symptoms, DLPFC stimulation was more efficient than VLPFC stimulation., For the other variables, no significant difference was observed between these two stimulation groups. These promising results require replication in larger trials.

2.
Brain Stimul ; 17(2): 421-430, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38574852

RESUMEN

BACKGROUND: Studies in animals and humans have shown that cortical neuroplasticity can be modulated by increasing serotonin levels by administering selective serotonin reuptake inhibitors (SSRI). However, little is known about the mechanistic background, especially the contribution of intracortical inhibition and facilitation, which depend on gamma-aminobutyric acid (GABA) and glutamate. OBJECTIVE: We aimed to explore the relevance of drivers of plasticity (glutamate- and GABA-dependent processes) for the effects of serotonin enhancement on tDCS-induced plasticity in healthy humans. METHODS: A crossover, partially double-blinded, randomized, and sham-controlled study was conducted in 21 healthy right-handed individuals. In each of the 7 sessions, plasticity was induced via transcranial direct current stimulation (tDCS). Anodal, cathodal, and sham tDCS were applied to the left motor cortex under SSRI (20 mg/40 mg citalopram) or placebo. Short-interval cortical inhibition (SICI) and intracortical facilitation (ICF) were monitored by paired-pulse transcranial magnetic stimulation for 5-6 h after intervention. RESULTS: Under placebo, anodal tDCS-induced LTP-like plasticity decreased SICI and increased ICF. In contrast, cathodal tDCS-elicited LTD-like plasticity induced the opposite effect. Under 20 mg and 40 mg citalopram, anodal tDCS did not affect SICI largely, while ICF was enhanced and prolonged. For cathodal tDCS, citalopram converted the increase of SICI and decrease of ICF into antagonistic effects, and this effect was dosage-dependent since it lasted longer under 40 mg when compared to 20 mg. CONCLUSION: We speculate that the main effects of acute serotonergic enhancement on tDCS-induced plasticity, the increase and prolongation of LTP-like plasticity effects, involves mainly the glutamatergic system.


Asunto(s)
Estudios Cruzados , Corteza Motora , Plasticidad Neuronal , Inhibidores Selectivos de la Recaptación de Serotonina , Estimulación Transcraneal de Corriente Directa , Humanos , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de los fármacos , Masculino , Adulto , Método Doble Ciego , Femenino , Corteza Motora/fisiología , Corteza Motora/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Adulto Joven , Estimulación Magnética Transcraneal , Serotonina/metabolismo , Citalopram/farmacología , Potenciales Evocados Motores/fisiología , Potenciales Evocados Motores/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Ácido Glutámico/metabolismo
3.
EXCLI J ; 23: 95-107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487086

RESUMEN

Swallowing problems are frequent in Parkinson's disease (PD). The aim of this study was to determine the effectiveness of combined transcranial Direct Current Stimulation (tDCS) and Conventional Dysphagia Therapy (CDT) on dysphagia in PD patients. Twenty PD patients with dysphagia were randomized into two groups: combination therapy (anodal tDCS plus CDT) and sham tDCS combined with CDT. Anodal or sham tDCS, bilaterally over the pharyngeal motor cortex, was applied with one mA during the first 20 min (real) or 30 s (sham) of CDT, which was delivered for 30 min. Both groups received twice-daily treatment sessions within two weeks. Swallowing functions were evaluated before, immediately, and one month after the intervention via the Penetration-Aspiration Scale (PAS), and the Swallowing Disorder Questionnaire (SDQ) as the primary outcome measures, and the Dysphagia Handicap Index (DHI) as the secondary outcome measure. The results showed a significant improvement of PAS scores from baseline to post-intervention and baseline to follow-up in both groups without significant differences between groups (t=0.03, p=0.973, and t=1.27, p=0.22 for post-intervention and follow-up time points, respectively). The results showed a significant reduction of SDQ and DHI scores in both groups after the intervention, but the magnitude of the change was significantly larger in the anodal tDCS group at the post-intervention (ta=2.58, pa=0.019 and tb=2.96, pb=0.008) and follow-up (ta=2.65, pa=0.016 and tb=2.97, pb=0.008) time points. This study provides preliminary evidence that bi-hemispheric anodal tDCS combined with CDT enhances swallowing functions in patients with Parkinson's disease more than CDT alone.

4.
Sci Rep ; 14(1): 7600, 2024 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556535

RESUMEN

Children with attention deficit-hyperactivity disorder (ADHD) have impaired hot and cold executive functions, which is thought to be related to impaired ventromedial and dorsolateral prefrontal cortex (vmPFC and dlPFC) functions. The present study aimed to assess the impact concurrent stimulation of dlPFC and vmPFC through transcranial random noise stimulation (tRNS), a non-invasive brain stimulation tool which enhances cortical excitability via application of alternating sinusoidal currents with random frequencies and amplitudes over the respective target regions on hot and cold executive functions. Eighteen children with ADHD received real and sham tRNS over the left dlPFC and the right vmPFC in two sessions with one week interval. The participants performed Circle Tracing, Go/No-Go, Wisconsin Card Sorting, and Balloon Analogue Risk Tasks during stimulation in each session. The results showed improved ongoing inhibition, prepotent inhibition, working memory, and decision making, but not set-shifting performance, during real, as compared to sham stimulation. This indicates that simultaneous stimulation of the dlPFC and the vmPFC improves hot and cold executive functions in children with ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estimulación Transcraneal de Corriente Directa , Niño , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Función Ejecutiva/fisiología , Trastorno por Déficit de Atención con Hiperactividad/terapia , Corteza Prefrontal/fisiología , Memoria a Corto Plazo/fisiología
5.
Seizure ; 117: 183-192, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452614

RESUMEN

For the one third of people with epilepsy whose seizures are not controlled with medications, targeting the seizure focus with neurostimulation can be an effective therapeutic strategy. In this focused review, we summarize a discussion of targeted neurostimulation modalities during a workshop held in Frankfurt, Germany in September 2023. Topics covered include: available devices for seizure focus stimulation; alternating current (AC) and direct current (DC) stimulation to reduce focal cortical excitability; modeling approaches to simulate DC stimulation; reconciling the efficacy of focal stimulation with the network theory of epilepsy; and the emerging concept of 'neurostimulation zones,' which are defined as cortical regions where focal stimulation is most effective for reducing seizures and which may or may not directly involve the seizure onset zone. By combining experimental data, modeling results, and clinical outcome analysis, rational selection of target regions and stimulation parameters is increasingly feasible, paving the way for a broader use of neurostimulation for epilepsy in the future.


Asunto(s)
Epilepsia , Humanos , Epilepsia/terapia , Terapia por Estimulación Eléctrica/métodos
6.
Front Neurosci ; 18: 1308370, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476869

RESUMEN

Introduction: Electronic Sports (eSports) is a popular and still emerging sport. Multiplayer Online Battle Arena (MOBA) and First/Third Person Shooting Games (FPS/TPS) require excellent visual attention abilities. Visual attention involves specific frontal and parietal areas, and is associated with alpha coherence. Transcranial alternating current stimulation (tACS) is a principally suitable tool to improve cognitive functions by modulation of regional oscillatory cortical networks that alters regional and larger network connectivity. Methods: In this single-blinded crossover study, 27 healthy college students were recruited and exposed to 10 Hz tACS of the right frontoparietal network. Subjects conducted a Visual Spatial Attention Distraction task in three phases: T0 (pre-stimulation), T1 (during stimulation), T2 (after-stimulation), and an eSports performance task which contained three games ("Exact Aiming," "Flick Aiming," "Press Reaction") before and after stimulation. Results: The results showed performance improvements in the "Exact Aiming" task and hint for a prevention of reaction time performance decline in the "Press Reaction" task in the real, as compared to the sham stimulation group. We also found a significant decrease of reaction time in the visual spatial attention distraction task at T1 compared to T0 in the real, but not sham intervention group. However, accuracy and inverse efficiency scores (IES) did not differ between intervention groups in this task. Discussion: These results suggest that 10 Hz tACS over the right frontal and parietal cortex might improve eSports-related skill performance in specific tasks, and also improve visual attention in healthy students during stimulation. This tACS protocol is a potential tool to modulate neurocognitive performance involving tracking targets, and might be a foundation for the development of a new concept to enhance eSports performance. This will require however proof in real life scenarios, as well optimization.

7.
Transl Psychiatry ; 14(1): 78, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316750

RESUMEN

Obsessive-compulsive disorder (OCD) is associated with a high disease burden, and treatment options are limited. We used intensified electrical stimulation in two dosages to target a main circuitry associated with the pathophysiology of OCD, left dorsolateral prefrontal cortex (l-DLPFC), and pre-supplementary motor area (pre-SMA) and assessed clinical outcomes, neuropsychological performance, and brain physiology. In a double-blind, randomized controlled trial, thirty-nine patients with OCD were randomly assigned to three groups of sham, 2-mA, or 1-mA transcranial direct current stimulation (tDCS) targeting the l-DLPFC (F3) and pre-SMA (FC2) with anodal and cathodal stimulation respectively. The treatment included 10 sessions of 20-minute stimulation delivered twice per day with 20-min between-session intervals. Outcome measures were reduction in OCD symptoms, anxiety, and depressive states, performance on a neuropsychological test battery (response inhibition, working memory, attention), oscillatory brain activities, and functional connectivity. All outcome measures except EEG were examined at pre-intervention, post-intervention, and 1-month follow-up times. The 2-mA protocol significantly reduced OCD symptoms, anxiety, and depression states and improved quality of life after the intervention up to 1-month follow-up compared to the sham group, while the 1-mA protocol reduced OCD symptoms only in the follow-up and depressive state immediately after and 1-month following the intervention. Both protocols partially improved response inhibition, and the 2-mA protocol reduced attention bias to OCD-related stimuli and improved reaction time in working memory performance. Both protocols increased alpha oscillatory power, and the 2-mA protocol decreased delta power as well. Both protocols increased connectivity in higher frequency bands at frontal-central areas compared to the sham. Modulation of the prefrontal-supplementary motor network with intensified tDCS ameliorates OCD clinical symptoms and results in beneficial cognitive effects. The 2-mA intensified stimulation resulted in larger symptom reduction and improved more converging outcome variables related to therapeutic efficacy. These results support applying the intensified prefrontal-SMA tDCS in larger trials.


Asunto(s)
Corteza Motora , Trastorno Obsesivo Compulsivo , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Resultado del Tratamiento , Calidad de Vida , Método Doble Ciego , Corteza Prefrontal
8.
Hum Vaccin Immunother ; 20(1): 2306677, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38289323

RESUMEN

A wide range of survey studies have explored vaccination hesitancy/resistance during the COVID-19 pandemic and provided evidence that this can be explained by several individual variables from the ideological, clinical, and socio-affective domain. However, evidence about which individual variables predict vaccine hesitancy in the post-pandemic state of COVID-19 is meager. We administered a battery of questionnaires to a group of 120 Italian participants with high and low scores on the adult vaccine hesitancy scale (aVHS) to investigate the predictive role of ideological (i.e. political orientation), clinical (i.e. anxiety, interoceptive accuracy), and socio-affective (i.e. alexithymia, disgust sensitivity/propensity, empathy) variables on vaccine hesitancy/resistance. This study provides evidence that lower interoceptive awareness and cognitive empathy are predictors of a greater hesitancy to get vaccinated in the post-pandemic COVID-19 state.


Asunto(s)
COVID-19 , Adulto , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , Vacilación a la Vacunación , Empatía , Italia/epidemiología
9.
Neuropsychol Rev ; 34(1): 338-361, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36877327

RESUMEN

Despite the numerous pharmacological interventions targeting dementia, no disease-modifying therapy is available, and the prognosis remains unfavorable. A promising perspective involves tackling high-frequency gamma-band (> 30 Hz) oscillations involved in hippocampal-mediated memory processes, which are impaired from the early stages of typical Alzheimer's Disease (AD). Particularly, the positive effects of gamma-band entrainment on mouse models of AD have prompted researchers to translate such findings into humans using transcranial alternating current stimulation (tACS), a methodology that allows the entrainment of endogenous cortical oscillations in a frequency-specific manner. This systematic review examines the state-of-the-art on the use of gamma-tACS in Mild Cognitive Impairment (MCI) and dementia patients to shed light on its feasibility, therapeutic impact, and clinical effectiveness. A systematic search from two databases yielded 499 records resulting in 10 included studies and a total of 273 patients. The results were arranged in single-session and multi-session protocols. Most of the studies demonstrated cognitive improvement following gamma-tACS, and some studies showed promising effects of gamma-tACS on neuropathological markers, suggesting the feasibility of gamma-tACS in these patients anyhow far from the strong evidence available for mouse models. Nonetheless, the small number of studies and their wide variability in terms of aims, parameters, and measures, make it difficult to draw firm conclusions. We discuss results and methodological limitations of the studies, proposing possible solutions and future avenues to improve research on the effects of gamma-tACS on dementia.


Asunto(s)
Disfunción Cognitiva , Demencia , Estimulación Transcraneal de Corriente Directa , Humanos , Cognición , Disfunción Cognitiva/terapia , Demencia/terapia , Memoria , Estimulación Transcraneal de Corriente Directa/métodos
10.
Neurorehabil Neural Repair ; 38(1): 19-29, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37837350

RESUMEN

BACKGROUND AND AIMS: The purpose of this Third Stroke Recovery and Rehabilitation Roundtable (SRRR3) was to develop consensus recommendations to address outstanding barriers for the translation of preclinical and clinical research using the non-invasive brain stimulation (NIBS) techniques Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS) and provide a roadmap for the integration of these techniques into clinical practice. METHODS: International NIBS and stroke recovery experts (N = 18) contributed to the consensus process. Using a nominal group technique, recommendations were reached via a five-stage process, involving a thematic survey, two priority ranking surveys, a literature review and an in-person meeting. RESULTS AND CONCLUSIONS: Results of our consensus process yielded five key evidence-based and feasibility barriers for the translation of preclinical and clinical NIBS research, which were formulated into five core consensus recommendations. Recommendations highlight an urgent need for (1) increased understanding of NIBS mechanisms, (2) improved methodological rigor in both preclinical and clinical NIBS studies, (3) standardization of outcome measures, (4) increased clinical relevance in preclinical animal models, and (5) greater optimization and individualization of NIBS protocols. To facilitate the implementation of these recommendations, the expert panel developed a new SRRR3 Unified NIBS Research Checklist. These recommendations represent a translational pathway for the use of NIBS in stroke rehabilitation research and practice.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Animales , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Encéfalo/fisiología , Consenso , Accidente Cerebrovascular/terapia , Estimulación Magnética Transcraneal/métodos , Fenómenos Magnéticos
11.
Int J Stroke ; 19(2): 145-157, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37824726

RESUMEN

BACKGROUND AND AIMS: The purpose of this Third Stroke Recovery and Rehabilitation Roundtable (SRRR3) was to develop consensus recommendations to address outstanding barriers for the translation of preclinical and clinical research using the non-invasive brain stimulation (NIBS) techniques Transcranial Magnetic Stimulation (TMS) and Transcranial Direct Current Stimulation (tDCS) and provide a roadmap for the integration of these techniques into clinical practice. METHODS: International NIBS and stroke recovery experts (N = 18) contributed to the consensus process. Using a nominal group technique, recommendations were reached via a five-stage process, involving a thematic survey, two priority ranking surveys, a literature review and an in-person meeting. RESULTS AND CONCLUSIONS: Results of our consensus process yielded five key evidence-based and feasibility barriers for the translation of preclinical and clinical NIBS research, which were formulated into five core consensus recommendations. Recommendations highlight an urgent need for (1) increased understanding of NIBS mechanisms, (2) improved methodological rigor in both preclinical and clinical NIBS studies, (3) standardization of outcome measures, (4) increased clinical relevance in preclinical animal models, and (5) greater optimization and individualization of NIBS protocols. To facilitate the implementation of these recommendations, the expert panel developed a new SRRR3 Unified NIBS Research Checklist. These recommendations represent a translational pathway for the use of NIBS in stroke rehabilitation research and practice.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Animales , Humanos , Accidente Cerebrovascular/terapia , Rehabilitación de Accidente Cerebrovascular/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Encéfalo/fisiología , Consenso , Estimulación Magnética Transcraneal/métodos , Fenómenos Magnéticos
12.
Sci Rep ; 13(1): 21003, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017050

RESUMEN

Contextual information is essential for learning and memory processes and plays a crucial role during the recall of extinction memory, and in the renewal effect, which is the context-dependent recovery of an extinguished response. The dopaminergic system is known to be involved in regulating attentional processes by shifting attention to novel and salient contextual cues. Higher dopamine levels are associated with a better recall of previously learned stimulus-outcome associations and enhanced encoding, as well as retrieval of contextual information which promotes renewal. In this fMRI study, we aimed to investigate the impact of processing contextual information and the influence of dopaminergic D2-like receptor activation on attention to contextual information during a predictive learning task as well as upon extinction learning, memory performance, and activity of extinction-related brain areas. A single oral dose of 1.25 mg bromocriptine or an identical-looking placebo was administered to the participants. We modified a predictive learning task that in previous studies reliably evoked a renewal effect, by increasing the complexity of contextual information. We analysed fixations and dwell on contextual cues by use of eye-tracking and correlated these with behavioural performance and BOLD activation of extinction-related brain areas. Our results indicate that the group with dopaminergic D2-like receptor stimulation had higher attention to task-relevant contextual information and greater/lower BOLD activation of brain regions associated with cognitive control during extinction learning and recall. Moreover, renewal responses were almost completely absent. Since this behavioural effect was observed for both treatment groups, we assume that this was due to the complexity of the altered task design.


Asunto(s)
Dopamina , Extinción Psicológica , Humanos , Dopamina/farmacología , Extinción Psicológica/fisiología , Encéfalo/diagnóstico por imagen , Recuerdo Mental/fisiología , Memoria
13.
eNeuro ; 10(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37932044

RESUMEN

Converging evidence indicates the beneficial effects of aerobic exercise on motor learning performance. Underlying mechanisms might be an impact of aerobic exercise on neuroplasticity and cortical excitability. Evidence suggests that motor learning and cortical excitability alterations correlate with the intensity of aerobic exercise and the activity level of participants. Thus, this study aims to investigate the effects of different aerobic exercise intensities on motor learning and cortical excitability in sedentary individuals. The study was conducted in a crossover and double-blind design. Twenty-six healthy sedentary individuals (13 women and 13 men) performed a motor learning task and received a cortical excitability assessment before and after a single session of low-, moderate-, and high-intensity aerobic exercise or a control intervention. The study revealed that motor learning performance and cortical excitability were significantly enhanced in the moderate-intensity aerobic exercise, compared with the other conditions. These findings suggest aerobic exercise intensity-dependent effects on motor learning in sedentary adults. The underlying mechanism might be an exercised-induced alteration of cortical excitability, specifically a reduction of GABA activity.


Asunto(s)
Excitabilidad Cortical , Corteza Motora , Adulto , Femenino , Humanos , Masculino , Potenciales Evocados Motores , Ejercicio Físico , Estimulación Magnética Transcraneal , Estudios Cruzados , Método Doble Ciego
14.
Clin Neuropsychiatry ; 20(4): 364-369, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37791094

RESUMEN

Objective: A relevance of fear and concerns about vaccine development and its side effects are suggested to explain COVID-19 vaccine hesitancy. However, evidence supporting the phobic origin hypothesis of hesitancy for COVID-19 and other vaccinations remains indirect and elusive. Method: We addressed this issue by investigating the existence of a relationship between fear conditioning, extinction, and the respective vaccination hesitancy and anxiety scores in a group of 25 individuals. Results: Overall, we show that the general mechanism of fear extinction learning is impaired in individuals with high vaccine hesitancy. State and trait anxiety scores do not account for this result. Conclusions: These findings suggest that attitudes against vaccination could be linked to an altered inhibitory learning process.

16.
Transl Psychiatry ; 13(1): 279, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37582922

RESUMEN

One of the most critical challenges in using noninvasive brain stimulation (NIBS) techniques for the treatment of psychiatric and neurologic disorders is inter- and intra-individual variability in response to NIBS. Response variations in previous findings suggest that the one-size-fits-all approach does not seem the most appropriate option for enhancing stimulation outcomes. While there is a growing body of evidence for the feasibility and effectiveness of individualized NIBS approaches, the optimal way to achieve this is yet to be determined. Transcranial electrical stimulation (tES) is one of the NIBS techniques showing promising results in modulating treatment outcomes in several psychiatric and neurologic disorders, but it faces the same challenge for individual optimization. With new computational and methodological advances, tES can be integrated with real-time functional magnetic resonance imaging (rtfMRI) to establish closed-loop tES-fMRI for individually optimized neuromodulation. Closed-loop tES-fMRI systems aim to optimize stimulation parameters based on minimizing differences between the model of the current brain state and the desired value to maximize the expected clinical outcome. The methodological space to optimize closed-loop tES fMRI for clinical applications includes (1) stimulation vs. data acquisition timing, (2) fMRI context (task-based or resting-state), (3) inherent brain oscillations, (4) dose-response function, (5) brain target trait and state and (6) optimization algorithm. Closed-loop tES-fMRI technology has several advantages over non-individualized or open-loop systems to reshape the future of neuromodulation with objective optimization in a clinically relevant context such as drug cue reactivity for substance use disorder considering both inter and intra-individual variations. Using multi-level brain and behavior measures as input and desired outcomes to individualize stimulation parameters provides a framework for designing personalized tES protocols in precision psychiatry.


Asunto(s)
Enfermedades del Sistema Nervioso , Estimulación Transcraneal de Corriente Directa , Humanos , Encéfalo , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Magnética Transcraneal/métodos , Estimulación Eléctrica
17.
Neurosci Biobehav Rev ; 152: 105300, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37392815

RESUMEN

Interest in neurostimulation interventions has significantly grown in recent decades, yet a scientometric analysis objectively mapping scientific knowledge and recent trends remains unpublished. Using relevant keywords, we conducted a search in the Web of Science Core Collection on September 23, 2022, retrieving a total of 47,681 documents with 987,979 references. We identified two prominent research trends: 'noninvasive brain stimulation' and 'invasive brain stimulation.' These methods have interconnected over time, forming a cluster focused on evidence synthesis. Noteworthy emerging research trends encompassed 'transcutaneous auricular vagus nerve stimulation,' 'DBS/epilepsy in the pediatric population,' 'spinal cord stimulation,' and 'brain-machine interface.' While progress has been made for various neurostimulation interventions, their approval as adjuvant treatments remains limited, and optimal stimulation parameters lack consensus. Enhancing communication between experts of both neurostimulation types and encouraging novel translational research could foster further development. These findings offer valuable insights for funding agencies and research groups, guiding future directions in the field.


Asunto(s)
Estimulación Encefálica Profunda , Epilepsia , Estimulación del Nervio Vago , Niño , Humanos , Estimulación Encefálica Profunda/métodos , Epilepsia/terapia
18.
Front Neurol ; 14: 1156987, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497013

RESUMEN

Stroke is a central nervous system disease that causes structural lesions and functional impairments of the brain, resulting in varying types, and degrees of dysfunction. The bimodal balance-recovery model (interhemispheric competition model and vicariation model) has been proposed as the mechanism of functional recovery after a stroke. We analyzed how combinations of motor observation treatment approaches, transcranial electrical (TES) or magnetic (TMS) stimulation and peripheral electrical (PES) or magnetic (PMS) stimulation techniques can be taken as accessorial physical therapy methods on symptom reduction of stroke patients. We suggest that top-down and bottom-up stimulation techniques combined with action observation treatment synergistically might develop into valuable physical therapy strategies in neurorehabilitation after stroke. We explored how TES or TMS intervention over the contralesional hemisphere or the lesioned hemisphere combined with PES or PMS of the paretic limbs during motor observation followed by action execution have super-additive effects to potentiate the effect of conventional treatment in stroke patients. The proposed paradigm could be an innovative and adjunctive approach to potentiate the effect of conventional rehabilitation treatment, especially for those patients with severe motor deficits.

19.
Brain Struct Funct ; 228(7): 1643-1655, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37436503

RESUMEN

Transcranial alternating current stimulation (tACS) offers a unique method to temporarily manipulate the activity of the stimulated brain region in a frequency-dependent manner. However, it is not clear if repetitive modulation of ongoing oscillatory activity with tACS over multiple days can induce changes in grey matter resting-state functional connectivity and white matter structural integrity. The current study addresses this question by applying multiple-session theta band stimulation on the left dorsolateral prefrontal cortex (L-DLPFC) during arithmetic training. Fifty healthy participants (25 males and 25 females) were randomly assigned to the experimental and sham groups, half of the participants received individually adjusted theta band tACS, and half received sham stimulation. Resting-state functional magnetic resonance (rs-fMRI) and diffusion-weighted imaging (DWI) data were collected before and after 3 days of tACS-supported procedural learning training. Resting-state network analysis showed a significant increase in connectivity for the frontoparietal network (FPN) with the precuneus cortex. Seed-based analysis with a seed defined at the primary stimulation site showed an increase in connectivity with the precuneus cortex, posterior cingulate cortex (PCC), and lateral occipital cortex. There were no effects on the structural integrity of white matter tracts as measured by fractional anisotropy, and on behavioral measures. In conclusion, the study suggests that multi-session task-associated tACS can produce significant changes in resting-state functional connectivity; however, changes in functional connectivity do not necessarily translate to changes in white matter structure or behavioral performance.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Masculino , Femenino , Humanos , Corteza Prefontal Dorsolateral , Estimulación Magnética Transcraneal/métodos , Corteza Prefrontal/fisiología , Encéfalo , Imagen por Resonancia Magnética/métodos
20.
Sci Rep ; 13(1): 10611, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391555

RESUMEN

Professional sports performance relies critically on the interaction between the brain and muscles during movement. Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique which modulates cortical excitability and can be used to improve motor performance in athletes. The present study aimed to investigate the effect of bilateral anodal tDCS (2 mA, 20 min) over the premotor cortex or cerebellum on motor and physiological functions and peak performance of professional gymnastics athletes. Seventeen professional gymnastics athletes participated in a randomized, sham-controlled, crossover study. In this study, we assessed the efficacy of two anodal tDCS protocols (2 mA, 20 min) with stimulation over the bilateral premotor cortex or cerebellum with the return electrodes placed over the opposite supraorbital areas. Power speed, strength coordination, endurance, static and dynamic strength, static and dynamic flexibility, and rating of perceived exertion were measured before and immediately after tDCS interventions (bilateral anodal tDCS over premotor cortices, anodal tDCS over the cerebellum, and sham tDCS). Additionally, physiological muscle performance parameters, including maximum voluntary isometric contraction (MVIC) of upper body muscles, were assessed during tDCS. Bilateral anodal tDCS over the premotor cortex, compared to anodal tDCS over the cerebellum and sham tDCS conditions, significantly improved power speed, strength coordination, and static and dynamic strength variables of professional gymnastics athletes. Furthermore, bilateral anodal tDCS over the cerebellum, compared to sham tDCS, significantly improved strength coordination. Moreover, bilateral premotor anodal tDCS significantly increased MVIC of all upper body muscles during stimulation, while anodal tDCS over the cerebellum increased MVIC in only some muscles. Bilateral anodal tDCS over the premotor cortex, and to a minor degree over the cerebellum, might be suited to improve some aspects of motor and physiological functions and peak performance levels of professional gymnastics athletes.Clinical Trial Registration ID: IRCT20180724040579N2.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Estudios Cruzados , Gimnasia , Atletas , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...