Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(8): 114503, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39018245

RESUMEN

Synaptic plasticities, such as long-term potentiation (LTP) and depression (LTD), tune synaptic efficacy and are essential for learning and memory. Current studies of synaptic plasticity in humans are limited by a lack of adequate human models. Here, we modeled the thalamocortical system by fusing human induced pluripotent stem cell-derived thalamic and cortical organoids. Single-nucleus RNA sequencing revealed that >80% of cells in thalamic organoids were glutamatergic neurons. When fused to form thalamocortical assembloids, thalamic and cortical organoids formed reciprocal long-range axonal projections and reciprocal synapses detectable by light and electron microscopy, respectively. Using whole-cell patch-clamp electrophysiology and two-photon imaging, we characterized glutamatergic synaptic transmission. Thalamocortical and corticothalamic synapses displayed short-term plasticity analogous to that in animal models. LTP and LTD were reliably induced at both synapses; however, their mechanisms differed from those previously described in rodents. Thus, thalamocortical assembloids provide a model system for exploring synaptic plasticity in human circuits.

2.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38352415

RESUMEN

Synaptic plasticities, such as long-term potentiation (LTP) and depression (LTD), tune synaptic efficacy and are essential for learning and memory. Current studies of synaptic plasticity in humans are limited by a lack of adequate human models. Here, we modeled the thalamocortical system by fusing human induced pluripotent stem cell-derived thalamic and cortical organoids. Single-nucleus RNA-sequencing revealed that most cells in mature thalamic organoids were glutamatergic neurons. When fused to form thalamocortical assembloids, thalamic and cortical organoids formed reciprocal long-range axonal projections and reciprocal synapses detectable by light and electron microscopy, respectively. Using whole-cell patch-clamp electrophysiology and two-photon imaging, we characterized glutamatergic synaptic transmission. Thalamocortical and corticothalamic synapses displayed short-term plasticity analogous to that in animal models. LTP and LTD were reliably induced at both synapses; however, their mechanisms differed from those previously described in rodents. Thus, thalamocortical assembloids provide a model system for exploring synaptic plasticity in human circuits.

3.
Nat Commun ; 12(1): 4535, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315877

RESUMEN

Retinoblastoma is a childhood cancer of the developing retina that initiates with biallelic inactivation of the RB1 gene. Children with germline mutations in RB1 have a high likelihood of developing retinoblastoma and other malignancies later in life. Genetically engineered mouse models of retinoblastoma share some similarities with human retinoblastoma but there are differences in their cellular differentiation. To develop a laboratory model of human retinoblastoma formation, we make induced pluripotent stem cells (iPSCs) from 15 participants with germline RB1 mutations. Each of the stem cell lines is validated, characterized and then differentiated into retina using a 3-dimensional organoid culture system. After 45 days in culture, the retinal organoids are dissociated and injected into the vitreous of eyes of immunocompromised mice to support retinoblastoma tumor growth. Retinoblastomas formed from retinal organoids made from patient-derived iPSCs have molecular, cellular and genomic features indistinguishable from human retinoblastomas. This model of human cancer based on patient-derived iPSCs with germline cancer predisposing mutations provides valuable insights into the cellular origins of this debilitating childhood disease as well as the mechanism of tumorigenesis following RB1 gene inactivation.


Asunto(s)
Organoides/patología , Retina/patología , Retinoblastoma/patología , Células Madre/patología , Adulto , Diferenciación Celular , Línea Celular , Epigénesis Genética , Exones/genética , Femenino , Genoma Humano , Mutación de Línea Germinal/genética , Humanos , Imagenología Tridimensional , Células Madre Pluripotentes Inducidas/metabolismo , Retinoblastoma/genética , Proteína de Retinoblastoma/genética
4.
STAR Protoc ; 2(3): 100628, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34235493

RESUMEN

Defects in protein quality control are the underlying cause of age-related diseases. The western blot analysis of detergent-soluble and insoluble protein fractions has proven useful in identifying interventions that regulate proteostasis. Here, we describe the protocol for such analyses in Drosophila tissues, mouse skeletal muscle, human organoids, and HEK293 cells. We describe key adaptations of this protocol and provide key information that will help modify this protocol for future studies in other tissues and disease models. For complete details on the use and execution of this protocol, please refer to Rai et al. (2021) and Hunt el al. (2021).


Asunto(s)
Western Blotting/métodos , Detergentes/química , Proteínas/metabolismo , Proteostasis , Animales , Electroforesis en Gel de Poliacrilamida , Células HEK293 , Humanos , Ratones , Proteínas/química , Solubilidad , Ubiquitinación
5.
Cell Metab ; 33(6): 1137-1154.e9, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33773104

RESUMEN

Neurodegeneration in the central nervous system (CNS) is a defining feature of organismal aging that is influenced by peripheral tissues. Clinical observations indicate that skeletal muscle influences CNS aging, but the underlying muscle-to-brain signaling remains unexplored. In Drosophila, we find that moderate perturbation of the proteasome in skeletal muscle induces compensatory preservation of CNS proteostasis during aging. Such long-range stress signaling depends on muscle-secreted Amyrel amylase. Mimicking stress-induced Amyrel upregulation in muscle reduces age-related accumulation of poly-ubiquitinated proteins in the brain and retina via chaperones. Preservation of proteostasis stems from the disaccharide maltose, which is produced via Amyrel amylase activity. Correspondingly, RNAi for SLC45 maltose transporters reduces expression of Amyrel-induced chaperones and worsens brain proteostasis during aging. Moreover, maltose preserves proteostasis and neuronal activity in human brain organoids challenged by thermal stress. Thus, proteasome stress in skeletal muscle hinders retinal and brain aging by mounting an adaptive response via amylase/maltose.


Asunto(s)
Envejecimiento/metabolismo , Amilasas/fisiología , Encéfalo/metabolismo , Proteínas de Drosophila/fisiología , Enfermedades Neurodegenerativas/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Retina/metabolismo , Animales , Encéfalo/patología , Línea Celular , Drosophila melanogaster , Humanos , Retina/patología
6.
Epigenetics Chromatin ; 13(1): 38, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32977832

RESUMEN

BACKGROUND: UTX/KDM6A is known to interact and influence multiple different chromatin modifiers to promote an open chromatin environment to facilitate gene activation, but its molecular activities in developmental gene regulation remain unclear. RESULTS: We report that in human neural stem cells, UTX binding correlates with both promotion and suppression of gene expression. These activities enable UTX to modulate neural stem cell self-renewal, promote neurogenesis, and suppress gliogenesis. In neural stem cells, UTX has a less influence over histone H3 lysine 27 and lysine 4 methylation but more predominantly affects histone H3 lysine 27 acetylation and chromatin accessibility. Furthermore, UTX suppresses components of AP-1 and, in turn, a gliogenesis program. CONCLUSIONS: Our findings revealed that UTX coordinates dualistic gene regulation to govern neural stem cell properties and neurogenesis-gliogenesis switch.


Asunto(s)
Células Madre Embrionarias/metabolismo , Histona Demetilasas/metabolismo , Microglía/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Factor de Transcripción AP-1/metabolismo , Células Madre Embrionarias/citología , Humanos , Microglía/citología , Células-Madre Neurales/citología , Unión Proteica
7.
Stem Cells Dev ; 24(11): 1265-83, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25749371

RESUMEN

The technology to convert adult human non-neural cells into neural lineages, through induced pluripotent stem cells (iPSCs), somatic cell nuclear transfer, and direct lineage reprogramming or transdifferentiation has progressed tremendously in recent years. Reprogramming-based approaches aimed at manipulating cellular identity have enormous potential for disease modeling, high-throughput drug screening, cell therapy, and personalized medicine. Human iPSC (hiPSC)-based cellular disease models have provided proof of principle evidence of the validity of this system. However, several challenges remain before patient-specific neurons produced by reprogramming can provide reliable insights into disease mechanisms or be efficiently applied to drug discovery and transplantation therapy. This review will first discuss limitations of currently available reprogramming-based methods in faithfully and reproducibly recapitulating disease pathology. Specifically, we will address issues such as culture heterogeneity, interline and inter-individual variability, and limitations of two-dimensional differentiation paradigms. Second, we will assess recent progress and the future prospects of reprogramming-based neurologic disease modeling. This includes three-dimensional disease modeling, advances in reprogramming technology, prescreening of hiPSCs and creating isogenic disease models using gene editing.


Asunto(s)
Reprogramación Celular , Terapia Genética/métodos , Células Madre Pluripotentes Inducidas/citología , Enfermedades Neurodegenerativas/terapia , Medicina Regenerativa/métodos , Animales , Trasplante de Células/métodos , Humanos , Enfermedades Neurodegenerativas/patología
8.
Development ; 141(17): 3324-30, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25085976

RESUMEN

Cortical progenitors undergo progressive fate restriction, thereby sequentially producing the different layers of the neocortex. However, how these progenitors precisely change their fate remains highly debatable. We have previously shown the existence of cortical feedback mechanisms wherein postmitotic neurons signal back to the progenitors and promote a switch from neurogenesis to gliogenesis. We showed that Sip1 (Zeb2), a transcriptional repressor, controls this feedback signaling. A similar mechanism was also suggested to control neuronal cell type specification; however, the underlying mechanism was not identified. Here, we provide direct evidence that in the developing mouse neocortex, Ntf3, a Sip1 target neurotrophin, acts as a feedback signal between postmitotic neurons and progenitors, promoting both apical progenitor (AP) to basal progenitor (BP) and deep layer (DL) to upper layer (UL) cell fate switches. We show that specific overexpression of Ntf3 in neocortical neurons promotes an overproduction of BP at the expense of AP. This shift is followed by a decrease in DL and an increase in UL neuronal production. Loss of Ntf3, by contrast, causes an increase in layer VI neurons but does not rescue the Sip1 mutant phenotype, implying that other parallel pathways also control the timing of progenitor cell fate switch.


Asunto(s)
Linaje de la Célula , Retroalimentación Fisiológica , Mitosis , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Neuronas/citología , Neurotrofina 3/metabolismo , Transducción de Señal , Animales , Recuento de Células , Corteza Cerebral , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Eliminación de Gen , Masculino , Ratones , Mosaicismo , Mutación/genética , Neurogénesis , Fenotipo , Regulación hacia Arriba
9.
Dev Biol ; 366(2): 341-56, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22546691

RESUMEN

The rostral migratory stream (RMS) is composed of neuroblasts migrating from the striatal SVZ to the olfactory bulb through a meshwork of GFAP- expressing astrocytes called the glial tube. So far, the origin of the glial tube astrocytes was attributed to differentiation of Type-B stem cells of the striatal SVZ. The true identity of these cells (Type-B stem cells versus immature/mature astrocytes) is also unclear. By analyzing a neocortex-specific conditional knockout of the transcriptional repressor Sip1 (Smad-interacting protein 1), we have now identified a novel pool of progenitors located within the dorsal SVZ (dSVZ) at early postnatal stages that differentiate into GFAP+ cells of the glial tube. We show that Sip1, expressed in postmitotic cortical neurons, controls the size of this dorsal progenitor pool possibly through cell-extrinsic mechanisms. Lack of Sip1 in the neocortex causes an expansion of this population leading to an increased production of GFAP+ astrocytes/Type-B stem cells in the glial tube, and a denser intercalation of these cells with Dcx+ neuroblasts of the RMS, the consequence of which is not yet clear. Neocortex-specific Sip1 deletion also led to an expansion of Dcx+ and Tbr2+ progenitor populations in the dSVZ. We show that the dSVZ progenitors (possibly remnants of embryonic radial glia) differentiate exclusively into BLBP+ cells which migrate into the RMS and mature into GFAP+ astrocytes/Type-B stem cells at around two weeks of postnatal development. In summary, our work shows that Sip1 controls the generation of GFAP+ cells of the RMS by regulating the size of a novel progenitor pool located in the postnatal dSVZ.


Asunto(s)
Proteínas Portadoras/fisiología , Movimiento Celular , Neocórtex/citología , Proteínas del Tejido Nervioso , Animales , Comunicación Celular , Diferenciación Celular , Proteína Doblecortina , Proteína Ácida Fibrilar de la Glía , Ratones , Morfogénesis , Neocórtex/fisiología , Proteínas de Unión al ARN , Células Madre/citología , Células Madre/fisiología
10.
Nat Neurosci ; 12(11): 1373-80, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19838179

RESUMEN

The fate of cortical progenitors, which progressively generate neurons and glial cells during development, is determined by temporally and spatially regulated signaling mechanisms. We found that the transcription factor Sip1 (Zfhx1b), which is produced at high levels in postmitotic neocortical neurons, regulates progenitor fate non-cell autonomously. Conditional deletion of Sip1 in young neurons induced premature production of upper-layer neurons at the expense of deep layers, precocious and increased generation of glial precursors, and enhanced postnatal astrocytogenesis. The premature upper-layer generation coincided with overexpression of the neurotrophin-3 (Ntf3) gene and upregulation of fibroblast growth factor 9 (Fgf9) gene expression preceded precocious gliogenesis. Exogenous application of Fgf9 to mouse cortical slices induced excessive generation of glial precursors in the germinal zone. Our data suggest that Sip1 restrains the production of signaling factors in postmitotic neurons that feed back to progenitors to regulate the timing of cell fate switch and the number of neurons and glial cells throughout corticogenesis.


Asunto(s)
Diferenciación Celular/fisiología , Retroalimentación Fisiológica/fisiología , Neocórtex/citología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Transducción de Señal/fisiología , Células Madre/fisiología , Animales , Bromodesoxiuridina/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Embrión de Mamíferos , Retroalimentación Fisiológica/efectos de los fármacos , Factor 9 de Crecimiento de Fibroblastos/genética , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Factor 9 de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica/fisiología , Técnicas In Vitro , Ratones , Ratones Noqueados , Neocórtex/embriología , Proteínas del Tejido Nervioso/deficiencia , Neurogénesis/fisiología , Neuroglía/fisiología , Neurotrofina 3/genética , Neurotrofina 3/metabolismo , ARN Mensajero/metabolismo , Células Madre/efectos de los fármacos , Factores de Tiempo
11.
Proc Natl Acad Sci U S A ; 104(31): 12919-24, 2007 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-17644613

RESUMEN

Smad-interacting protein-1 (Sip1) [Zinc finger homeobox (Zfhx1b)] is a transcription factor implicated in the genesis of Mowat-Wilson syndrome in humans. Sip1 expression in the dorsal telencephalon of mouse embryos was documented from E12.5. We inactivated the gene specifically in cortical precursors. This resulted in the lack of the entire hippocampal formation. Sip1 mutant mice exhibited death of differentiating cells and decreased proliferation in the region of the prospective hippocampus and dentate gyrus. The expression of the Wnt antagonist Sfrp1 was ectopically activated, whereas the activity of the noncanonical Wnt effector, JNK, was down-regulated in the embryonic hippocampus of mutant mice. In cortical cells, Sip1 protein was detected on the promoter of Sfrp1 gene and both genes showed a mutually exclusive pattern of expression suggesting that Sfrp1 expression is negatively regulated by Sip1. Sip1 is therefore essential to the development of the hippocampus and dentate gyrus, and is able to modulate Wnt signaling in these regions.


Asunto(s)
Hipocampo/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Animales , Apoptosis , Proliferación Celular , Eliminación de Gen , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Hipocampo/citología , Hipocampo/embriología , Hipocampo/crecimiento & desarrollo , Proteínas de Homeodominio/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Mutación/genética , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Células Madre/citología , Células Madre/metabolismo , Telencéfalo/metabolismo , Regulación hacia Arriba , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA