Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2725, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585055

RESUMEN

While multiplexing samples using DNA barcoding revolutionized the pace of biomedical discovery, multiplexing of live imaging-based applications has been limited by the number of fluorescent proteins that can be deconvoluted using common microscopy equipment. To address this limitation, we develop visual barcodes that discriminate the clonal identity of single cells by different fluorescent proteins that are targeted to specific subcellular locations. We demonstrate that deconvolution of these barcodes is highly accurate and robust to many cellular perturbations. We then use visual barcodes to generate 'Signalome' cell-lines by mixing 12 clones of different live reporters into a single population, allowing simultaneous monitoring of the activity in 12 branches of signaling, at clonal resolution, over time. Using the 'Signalome' we identify two distinct clusters of signaling pathways that balance growth and proliferation, emphasizing the importance of growth homeostasis as a central organizing principle in cancer signaling. The ability to multiplex samples in live imaging applications, both in vitro and in vivo may allow better high-content characterization of complex biological systems.


Asunto(s)
ADN , Microscopía , Células Clonales , Código de Barras del ADN Taxonómico/métodos
2.
Transl Psychiatry ; 11(1): 201, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795631

RESUMEN

Major depressive disorder is highly prevalent worldwide and has been affecting an increasing number of people each year. Current first line antidepressants show merely 37% remission, and physicians are forced to use a trial-and-error approach when choosing a single antidepressant out of dozens of available medications. We sought to identify a method of testing that would provide patient-specific information on whether a patient will respond to a medication using in vitro modeling. Patient-derived lymphoblastoid cell lines from the Sequenced Treatment Alternatives to Relieve Depression study were used to rapidly generate cortical neurons and screen them for bupropion effects, for which the donor patients showed remission or non-remission. We provide evidence for biomarkers specific for bupropion response, including synaptic connectivity and morphology changes as well as specific gene expression alterations. These biomarkers support the concept of personalized antidepressant treatment based on in vitro platforms and could be utilized as predictors to patient response in the clinic.


Asunto(s)
Trastorno Depresivo Mayor , Antidepresivos/uso terapéutico , Biomarcadores , Depresión , Trastorno Depresivo Mayor/tratamiento farmacológico , Humanos , Neuronas , Resultado del Tratamiento
3.
Cell Commun Signal ; 17(1): 69, 2019 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-31228951

RESUMEN

BACKGROUND: Premigratory neural crest progenitors undergo an epithelial-to-mesenchymal transition and leave the neural tube as motile cells. Previously, we showed that BMP generates trunk neural crest emigration through canonical Wnt signaling which in turn stimulates G1/S transition. The molecular network underlying this process is, however, not yet completely deciphered. Yes-associated-protein (YAP), an effector of the Hippo pathway, controls various aspects of development including cell proliferation, migration, survival and differentiation. In this study, we examined the possible involvement of YAP in neural crest emigration and its relationship with BMP and Wnt. METHODS: We implemented avian embryos in which levels of YAP gene activity were either reduced or upregulated by in ovo plasmid electroporation, and monitored effects on neural crest emigration, survival and proliferation. Neural crest-derived sensory neuron and melanocyte development were assessed upon gain of YAP function. Imunohistochemistry was used to assess YAP expression. In addition, the activity of specific signaling pathways including YAP, BMP and Wnt was monitored with specific reporters. RESULTS: We find that the Hippo pathway transcriptional co-activator YAP is expressed and is active in premigratory crest of avian embryos. Gain of YAP function stimulates neural crest emigration in vivo, and attenuating YAP inhibits cell exit. This is associated with an accumulation of FoxD3-expressing cells in the dorsal neural tube, with reduced proliferation, and enhanced apoptosis. Furthermore, gain of YAP function inhibits differentiation of Islet-1-positive sensory neurons and augments the number of EdnrB2-positive melanocytes. Using specific in vivo reporters, we show that loss of YAP function in the dorsal neural tube inhibits BMP and Wnt activities whereas gain of YAP function stimulates these pathways. Reciprocally, inhibition of BMP and Wnt signaling by noggin or Xdd1, respectively, downregulates YAP activity. In addition, YAP-dependent stimulation of neural crest emigration is compromised upon inhibition of either BMP or Wnt activities. Together, our results suggest a positive bidirectional cross talk between these pathways. CONCLUSIONS: Our data show that YAP is necessary for emigration of neural crest progenitors. In addition, they incorporate YAP signaling into a BMP/Wnt-dependent molecular network responsible for emigration of trunk-level neural crest.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Cresta Neural/metabolismo , Transactivadores/metabolismo , Proteínas Wnt/metabolismo , Animales , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Melanocitos/metabolismo , Unión Proteica , Transporte de Proteínas
4.
CRISPR J ; 2: 121-132, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30998096

RESUMEN

Much of our understanding of eukaryotic genes function comes from studies of the activity of their mutated forms or allelic variability. Mutations have helped elucidate how members of an intricate pathway function in relation to each other and how they operate in the context of the regulatory circuitry that surrounds them. A PCR-based site-directed mutagenesis technique is often used to engineer these variants. While these tools are efficient, they are not without significant limitations, most notably off-site mutagenesis, limited scalability, and lack of multiplexing capabilities. To overcome many of these limitations, we now describe a novel method for the introduction of both simple and complex gene mutations in plasmid DNA by using in vitro DNA editing. A specifically designed pair of CRISPR-Cas12a ribonucleoprotein complexes are used to execute site-specific double-strand breaks on plasmid DNA, enabling the excision of a defined DNA fragment. Donor DNA replacement is catalyzed by a mammalian cell-free extract through microhomology annealing of short regions of single-stranded DNA complementarity; we term this method CRISPR-directed DNA mutagenesis (CDM). The products of CDM are plasmids bearing precise donor fragments with specific modifications and CDM could be used for mutagenesis in larger constructs such as Bacterial Artificial Chromosome (BACs) or Yeast Artificial Chromosome (YACs). We further show that this reaction can be multiplexed so that product molecules with multiple site-specific mutations and site-specific deletions can be generated in the same in vitro reaction mixture. Importantly, the CDM method produces fewer unintended mutations in the target gene as compared to the standard site-directed mutagenesis assay; CDM produces no unintended mutations throughout the plasmid backbone. Lastly, this system recapitulates the multitude of reactions that take place during CRISPR-directed gene editing in mammalian cells and affords the opportunity to study the mechanism of action of CRISPR-directed gene editing in mammalian cells by visualizing a multitude of genetic products.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Mutagénesis Sitio-Dirigida/métodos , Adulto , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteína 9 Asociada a CRISPR/genética , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN/genética , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Ingeniería Genética/métodos , Terapia Genética/métodos , Células HEK293 , Humanos , Mutagénesis/genética , Mutación/genética , Plásmidos/genética , Polimorfismo de Nucleótido Simple/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
5.
CRISPR J ; 1(2): 191-202, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30687813

RESUMEN

Extraordinary efforts are underway to offer greater versatility and broader applications for CRISPR-directed gene editing. Here, we report the establishment of a system for studying this process in a mammalian cell-free extract prepared from HEK-293 human embryonic kidney cells. A ribonucleoprotein (RNP) particle and a mammalian cell-free extract coupled with a genetic readout are used to generate and identify specific deletions or insertions within a plasmid target. A Cpf1 (Cas12a) RNP induces a double-stranded break, and the cell-free extract provides the appropriate enzymatic activities to direct specific deletion through resection and homology directed repair in the presence of single- and double-stranded donor DNA. This cell-free system establishes a foundation to study the heterogeneous products of gene editing, as well as the relationship between nonhomologous end joining and homology directed repair and related regulatory circuitries simultaneously in a controlled environment.

6.
BMC Biol ; 14: 23, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27012662

RESUMEN

BACKGROUND: The dorsal midline region of the neural tube that results from closure of the neural folds is generally termed the roof plate (RP). However, this domain is highly dynamic and complex, and is first transiently inhabited by prospective neural crest (NC) cells that sequentially emigrate from the neuroepithelium. It only later becomes the definitive RP, the dorsal midline cells of the spinal cord. We previously showed that at the trunk level of the axis, prospective RP progenitors originate ventral to the premigratory NC and progressively reach the dorsal midline following NC emigration. However, the molecular mechanisms underlying the end of NC production and formation of the definitive RP remain virtually unknown. RESULTS: Based on distinctive cellular and molecular traits, we have defined an initial NC and a subsequent RP stage, allowing us to investigate the mechanisms responsible for the transition between the two phases. We demonstrate that in spite of the constant production of BMP4 in the dorsal tube at both stages, RP progenitors only transiently respond to the ligand and lose competence shortly before they arrive at their final location. In addition, exposure of dorsal tube cells at the NC stage to high levels of BMP signaling induces premature RP traits, such as Hes1/Hairy1, while concomitantly inhibiting NC production. Reciprocally, early inhibition of BMP signaling prevents Hairy1 mRNA expression at the RP stage altogether, suggesting that BMP is both necessary and sufficient for the development of this RP-specific trait. Furthermore, when Hes1/Hairy1 is misexpressed at the NC stage, it inhibits BMP signaling and downregulates BMPR1A/Alk3 mRNA expression, transcription of BMP targets such as Foxd3, cell-cycle progression, and NC emigration. Reciprocally, Foxd3 inhibits Hairy1, suggesting that repressive cross-interactions at the level of, and downstream from, BMP ensure the temporal separation between both lineages. CONCLUSIONS: Together, our data suggest that BMP signaling is important both for NC and RP formation. Given that these two structures develop sequentially, we speculate that the longer exposure of RP progenitors to BMP compared with that of premigratory NC cells may be translated into a higher signaling level in the former. This induces changes in responsiveness to BMP, most likely by downregulating the expression of Alk3 receptors and, consequently, of BMP-dependent downstream transcription factors, which exhibit spatial complementary expression patterns and mutually repress each other to generate alternative fates. This molecular dynamic is likely to account for the transition between the NC and definitive RP stages and thus be responsible for the segregation between central and peripheral lineages during neural development.


Asunto(s)
Proteínas Aviares/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Embrión de Pollo/embriología , Proteínas de Homeodominio/metabolismo , Cresta Neural/embriología , Tubo Neural/embriología , Transducción de Señal , Animales , Ciclo Celular , Embrión de Pollo/citología , Embrión de Pollo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/citología , Cresta Neural/metabolismo , Tubo Neural/citología , Tubo Neural/metabolismo , Codorniz
7.
Proc Natl Acad Sci U S A ; 110(31): 12709-14, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23858437

RESUMEN

Skin melanocytes arise from two sources: either directly from neural crest progenitors or indirectly from neural crest-derived Schwann cell precursors after colonization of peripheral nerves. The relationship between these two melanocyte populations and the factors controlling their specification remains poorly understood. Direct lineage tracing reveals that neural crest and Schwann cell progenitor-derived melanocytes are differentially restricted to the epaxial and hypaxial body domains, respectively. Furthermore, although both populations are initially part of the Foxd3 lineage, hypaxial melanocytes lose Foxd3 at late stages upon separation from the nerve, whereas we recently found that epaxial melanocytes segregate earlier from Foxd3-positive neural progenitors while still residing in the dorsal neural tube. Gain- and loss-of-function experiments in avians and mice, respectively, reveal that Foxd3 is both sufficient and necessary for regulating the balance between melanocyte and Schwann cell development. In addition, Foxd3 is also sufficient to regulate the switch between neuronal and glial fates in sensory ganglia. Together, we propose that differential fate acquisition of neural crest-derived cells depends on their progressive segregation from the Foxd3-positive lineage.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Factores de Transcripción Forkhead/metabolismo , Melanocitos/metabolismo , Cresta Neural/embriología , Células-Madre Neurales/metabolismo , Proteínas Represoras/metabolismo , Células de Schwann/metabolismo , Animales , Embrión de Pollo , Pollos , Ganglios Sensoriales/citología , Ganglios Sensoriales/embriología , Melanocitos/citología , Ratones , Cresta Neural/citología , Células-Madre Neurales/citología , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Células de Schwann/citología
8.
Development ; 140(11): 2269-79, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23615280

RESUMEN

Understanding when and how multipotent progenitors segregate into diverse fates is a key question during embryonic development. The neural crest (NC) is an exemplary model system with which to investigate the dynamics of progenitor cell specification, as it generates a multitude of derivatives. Based on 'in ovo' lineage analysis, we previously suggested an early fate restriction of premigratory trunk NC to generate neural versus melanogenic fates, yet the timing of fate segregation and the underlying mechanisms remained unknown. Analysis of progenitors expressing a Foxd3 reporter reveals that prospective melanoblasts downregulate Foxd3 and have already segregated from neural lineages before emigration. When this downregulation is prevented, late-emigrating avian precursors fail to upregulate the melanogenic markers Mitf and MC/1 and the guidance receptor Ednrb2, generating instead glial cells that express P0 and Fabp. In this context, Foxd3 lies downstream of Snail2 and Sox9, constituting a minimal network upstream of Mitf and Ednrb2 to link melanogenic specification with migration. Consistent with the gain-of-function data in avians, loss of Foxd3 function in mouse NC results in ectopic melanogenesis in the dorsal tube and sensory ganglia. Altogether, Foxd3 is part of a dynamically expressed gene network that is necessary and sufficient to regulate fate decisions in premigratory NC. Their timely downregulation in the dorsal neural tube is thus necessary for the switch between neural and melanocytic phases of NC development.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Melanocitos/metabolismo , Tubo Neural/embriología , Tubo Neural/fisiología , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Embrión de Pollo , Melaninas/metabolismo , Ratones , Factor de Transcripción Asociado a Microftalmía/metabolismo , Microscopía Fluorescente , Receptor de Endotelina B/metabolismo , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción de la Familia Snail , Factores de Tiempo , Factores de Transcripción/metabolismo
9.
Dev Growth Differ ; 55(1): 60-78, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23043365

RESUMEN

The dorsal domains of the neural tube and somites are transient embryonic epithelia; they constitute the source of neural crest progenitors that generate the peripheral nervous system, pigment cells and ectomesenchyme, and of the dermomyotome that develops into myocytes, dermis and vascular cells, respectively. Based on the variety of derivatives produced by each type of epithelium, a classical yet still highly relevant question is whether these embryonic epithelia are composed of homogeneous multipotent progenitors or, alternatively, of subsets of fate-restricted cells. Growing evidence substantiates the notion that both the dorsal tube and the dermomyotome are heterogeneous epithelia composed of multipotent as well as fate-restricted precursors that emerge as such in a spatio-temporally regulated manner. Elucidation of the state of commitment of the precedent progenitors is of utmost significance for deciphering the mechanisms that regulate fate segregation during embryogenesis. In addition, it will contribute to understanding the nature of well documented neural crest-somite interactions shown to modulate the timing of neural crest cell emigration, their segmental migration, and myogenesis.


Asunto(s)
Mesodermo/embriología , Cresta Neural/embriología , Somitos/embriología , Animales , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Linaje de la Célula , Movimiento Celular , Desarrollo Embrionario , Células Epiteliales/citología , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Mesodermo/citología , Desarrollo de Músculos , Músculo Liso/citología , Músculo Liso/metabolismo , Cresta Neural/citología , Neuroglía/citología , Neuroglía/metabolismo , Somitos/citología , Células Madre/citología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
Dev Neurobiol ; 70(12): 796-812, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20683859

RESUMEN

The dorsal neural tube first generates neural crest cells that exit the neural primordium following an epithelial-to-mesenchymal conversion to become sympathetic ganglia, Schwann cells, dorsal root sensory ganglia, and melanocytes of the skin. Following the end of crest emigration, the dorsal midline of the neural tube becomes the roof plate, a signaling center for the organization of dorsal neuronal cell types. Recent lineage analysis performed before the onset of crest delamination revealed that the dorsal tube is a highly dynamic region sequentially traversed by fate-restricted crest progenitors. Furthermore, prospective roof plate cells were shown to originate ventral to presumptive crest and to progressively relocate dorsalward to occupy their definitive midline position following crest delamination. These data raise important questions regarding the mechanisms of cell emigration in relation to fate acquisition, and suggest the possibility that spatial and/or temporal information in the dorsal neural tube determines initial segregation of neural crest cells into their derivatives. In addition, they emphasize the need to address what controls the end of neural crest production and consequent roof plate formation, a fundamental issue for understanding the separation between central and peripheral lineages during development of the nervous system.


Asunto(s)
Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Ganglios Espinales/citología , Cresta Neural/citología , Tubo Neural/citología , Neuronas/fisiología , Animales , Ganglios Espinales/crecimiento & desarrollo , Humanos , Modelos Neurológicos , Cresta Neural/crecimiento & desarrollo , Tubo Neural/crecimiento & desarrollo
11.
Development ; 137(4): 585-95, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20110324

RESUMEN

Colonization of trunk neural crest derivatives in avians follows a ventral to dorsal order beginning with sympathetic ganglia, Schwann cells, sensory ganglia and finally melanocytes. Continuous crest emigration underlies this process, which is accounted for by a progressive ventral to dorsal relocation of neural tube progenitors prior to departure. This causes a gradual narrowing of FoxD3, Sox9 and Snail2 expression domains in the dorsal tube that characterize the neural progenitors of the crest and these genes are no longer transcribed by the time melanoblasts begin emigrating. Consistently, the final localization of crest cells can be predicted from their relative ventrodorsal position within the premigratory domain or by their time of delamination. Thus, a dynamic spatiotemporal fate map of crest derivatives exists in the dorsal tube at flank levels of the axis with its midline region acting as a sink for the ordered ingression and departure of progenitors. Furthermore, discrete lineage analysis of the dorsal midline at progressive stages generated progeny in single rather than multiple derivatives, revealing early fate restrictions. Compatible with this notion, when early emigrating ;neural' progenitors were diverted into the lateral ;melanocytic' pathway, they still adopted neural traits, suggesting that initial fate acquisition is independent of the migratory environment and that the potential of crest cells prior to emigration is limited.


Asunto(s)
Embrión de Pollo/embriología , Coturnix/embriología , Cresta Neural/embriología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Movimiento Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Modelos Neurológicos , Cresta Neural/citología , Cresta Neural/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción SOX9/genética , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA