Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(24): e2313931, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552603

RESUMEN

Current reconstruction chemistry studies are mainly operated at the laboratory scale, where the operating parameters are different from those used in industrial water electrolyzers. This gap leads to unclear reconstruction behaviors under industrial conditions and constrains the application of catalysts. Here, this work presents a new reconstruction mechanism and anomalous detachment phenomena observed in leaching-type oxygen-evolving precatalysts under industrial conditions, different from the reported results obtained under laboratory conditions. The identified detachment issues are closely linked to the production of a potassium salt separate phase, which proves sensitive to the local environment, and its instability easily leads to catalyst stripping from the substrate. By establishing detachment critical point and operating parameter-detachment correlation, a targeted reconstruction strategy is proposed to achieve smooth ligand leaching and effectively solve the detachment issue. Theoretical analyses validate the dual-site regulation in directionally reconstructed catalysts with optimized intermediate adsorption. Under industrial conditions, the coupled electrolyzer delivers an industrial-level current density at low cell voltage with prolonged durability, 1 A cm-2 at 2 V for over 340 h. This work bridges the gap of leaching-type precatalysts between laboratory test conditions and industrial operating conditions.

2.
Adv Mater ; 36(19): e2311312, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38145390

RESUMEN

Polyolefin separators are the most common separators used in rechargeable lithium (Li)-ion batteries. However, the influence of different polyolefin separators on the performance of Li metal batteries (LMBs) has not been well studied. By performing particle injection simulations on the reconstructed three-dimensional pores of different polyethylene separators, it is revealed that the pore structure of the separator has a significant impact on the ion flux distribution, the Li deposition behavior, and consequently, the cycle life of LMBs. It is also discovered that the homogeneity factor of Li-ion toward Li metal electrode is positively correlated to the longevity and reproducibility of LMBs. This work not only emphasizes the importance of the pore structure of polyolefin separators but also provides an economic and effective method to screen favorable separators for LMBs.

3.
Angew Chem Int Ed Engl ; 62(8): e202215552, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36536537

RESUMEN

The corrosion, parasitic reactions, and aggravated dendrite growth severely restrict development of aqueous Zn metal batteries. Here, we report a novel strategy to break the hydrogen bond network between water molecules and construct the Zn(TFSI)2 -sulfolane-H2 O deep eutectic solvents. This strategy cuts off the transfer of protons/hydroxides and inhibits the activity of H2 O, as reflected in a much lower freezing point (<-80 °C), a significantly larger electrochemical stable window (>3 V), and suppressed evaporative water from electrolytes. Stable Zn plating/stripping for over 9600 h was obtained. Based on experimental characterizations and theoretical simulations, it has been proved that sulfolane can effectively regulate solvation shell and simultaneously build the multifunctional Zn-electrolyte interface. Moreover, the multi-layer homemade modular cell and 1.32 Ah pouch cell further confirm its prospect for practical application.

4.
Adv Mater ; 34(27): e2202188, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35477113

RESUMEN

Uneven distribution of electric fields at the electrolyte-anode interface and associated Zn dendrite growth is one of the most critical barriers that limit the life span of aqueous zinc-ion batteries. Herein, new-type Zn-A-O (A = Si, Ti) interface layers with thin and uniform thickness, porosity, and hydrophilicity properties are developed to realize homogeneous and smooth Zn plating. For ZnSiO3 nanosheet arrays on Zn foil (Zn@ZSO), their formation follows an "etching-nucleation-growth" mechanism that is confirmed by a well-designed Zn-island-based identical-location microscopy method, the geometric area of which is up to 1000 cm2 in one-pot synthesis based on a low-temperature wet-chemical method. Guided by the structural advantages of the ZSO layer, the Zn2+ flux gets equalized. Besides ultralow polarization, the life spans of symmetric cells and full cells coupled with a high-mass-loading K0.27 MnO2 ·0.54H2 O (8 mg cm-2 ) cathode, are increased by 3-7 times with the Zn@ZSO anode. Moreover, the large-scale preparation of Zn@ZSO foil contributes to a 0.5 Ah multilayer pouch cell with high performance, further confirming its prospects for practical application.

5.
ACS Nano ; 16(5): 7291-7300, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35445597

RESUMEN

Considered as an imperative alternative to the commercial LiFePO4 battery, the potassium metal battery possesses great potential in grid-scale energy storage systems due to the low cost, low standard redox potential, and high abundance of potassium. The potassium dendrite growth, large volume change, and unstable solid electrolyte interphase (SEI) on the potassium metal anode have, however, hindered its applications. Although conductive scaffolds coupling with potassium metal have been widely proposed to address the above issues, it remains challenging to fabricate a uniform composite with uncompromised capacity. Herein, we propose a facile and efficient strategy to construct dendrite-free and practical carbon-based potassium composite anodes via amine functionalization of the carbon scaffolds that enables fast molten potassium infusion within several seconds. On the basis of experiments and theoretical calculations, we show that highly potassiophilic amine groups immediately transform carbon scaffolds from nonwetting to wetting to postassium. Our carbon-cloth-based potassium composite anode (K@CC) can accommodate volume fluctuation, provide abundant nucleation sites, and lower the local current density, achieving nondendritic morphology with a stable SEI. The fabricated K0.7Mn0.7Ni0.3O2|K@CC full cell displays excellent rate capability and an ultralong lifespan over 8000 cycles (68.5% retention) at a high current of 1 A g-1.

6.
ACS Appl Mater Interfaces ; 13(37): 44339-44347, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34495631

RESUMEN

The criticality of cobalt (Co) has been motivating the quest for Co-free positive electrode materials for building lithium (Li)-ion batteries (LIBs). However, the LIBs based on Co-free positive electrode materials usually suffer from relatively fast capacity decay when coupled with conventional LiPF6-organocarbonate electrolytes. To address this issue, a 1,2-dimethoxyethane-based localized high-concentration electrolyte (LHCE) was developed and evaluated in a Co-free Li-ion cell chemistry (graphite||LiNi0.96Mg0.02Ti0.02O2). Extraordinary capacity retentions were achieved with the LHCE in coin cells (95.3%), single-layer pouch cells (79.4%), and high-capacity loading double-layer pouch cells (70.9%) after being operated within the voltage range of 2.5-4.4 V for 500 charge/discharge cycles. The capacity retentions of counterpart cells using the LiPF6-based conventional electrolyte only reached 61.1, 57.2, and 59.8%, respectively. Mechanistic studies reveal that the superior electrode/electrolyte interphases formed by the LHCE and the intrinsic chemical stability of the LHCE account for the excellent electrochemical performance in the Co-free Li-ion cells.

7.
Angew Chem Int Ed Engl ; 60(30): 16506-16513, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34010506

RESUMEN

Lithium (Li)-magnesium (Mg) alloy with limited Mg amount, which can also be called Mg-doped Li (Li-Mg), has been considered as a potential alternative anode for high energy density rechargeable Li metal batteries. However, the optimum doping-content of Mg in Li-Mg anode and the mechanism of the improved performance are not well understood. Herein, density functional theory (DFT) calculations are used to investigate the effect of Mg amount in Li-Mg anode. The Li-Mg with about 5 wt. % Mg (abbreviated as Li-Mg5) has the lowest absorption energy of Li, thus all the surface area can be "controlled" by Mg atoms, leading to the smooth and continuous deposition of Li on the surface around the Mg center. A localized high concentration electrolyte enables Li-Mg5 to exhibit the best cycling stability in Li metal batteries with high-loading cathode and lean electrolyte under 4.4 V high-voltage, which is approaching the demand of practical application. This electrolyte also helps generate an inorganic-rich solid electrolyte interphase, which leads to smooth, compact and less corrosion layer on the Li-Mg5 surface. Both theoretical simulations and experimental results prove that Li-Mg5 has optimum Mg content and gives best battery cycling performance.

8.
Proc Natl Acad Sci U S A ; 118(9)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33632763

RESUMEN

Electrolyte is very critical to the performance of the high-voltage lithium (Li) metal battery (LMB), which is one of the most attractive candidates for the next-generation high-density energy-storage systems. Electrolyte formulation and structure determine the physical properties of the electrolytes and their interfacial chemistries on the electrode surfaces. Localized high-concentration electrolytes (LHCEs) outperform state-of-the-art carbonate electrolytes in many aspects in LMBs due to their unique solvation structures. Types of fluorinated cosolvents used in LHCEs are investigated here in searching for the most suitable diluent for high-concentration electrolytes (HCEs). Nonsolvating solvents (including fluorinated ethers, fluorinated borate, and fluorinated orthoformate) added in HCEs enable the formation of LHCEs with high-concentration solvation structures. However, low-solvating fluorinated carbonate will coordinate with Li+ ions and form a second solvation shell or a pseudo-LHCE which diminishes the benefits of LHCE. In addition, it is evident that the diluent has significant influence on the electrode/electrolyte interphases (EEIs) beyond retaining the high-concentration solvation structures. Diluent molecules surrounding the high-concentration clusters could accelerate or decelerate the anion decomposition through coparticipation of diluent decomposition in the EEI formation. The varied interphase features lead to significantly different battery performance. This study points out the importance of diluents and their synergetic effects with the conductive salt and the solvating solvent in designing LHCEs. These systematic comparisons and fundamental insights into LHCEs using different types of fluorinated solvents can guide further development of advanced electrolytes for high-voltage LMBs.

9.
Proc Natl Acad Sci U S A ; 117(46): 28603-28613, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33144505

RESUMEN

Functional electrolyte is the key to stabilize the highly reductive lithium (Li) metal anode and the high-voltage cathode for long-life, high-energy-density rechargeable Li metal batteries (LMBs). However, fundamental mechanisms on the interactions between reactive electrodes and electrolytes are still not well understood. Recently localized high-concentration electrolytes (LHCEs) are emerging as a promising electrolyte design strategy for LMBs. Here, we use LHCEs as an ideal platform to investigate the fundamental correlation between the reactive characteristics of the inner solvation sheath on electrode surfaces due to their unique solvation structures. The effects of a series of LHCEs with model electrolyte solvents (carbonate, sulfone, phosphate, and ether) on the stability of high-voltage LMBs are systematically studied. The stabilities of electrodes in different LHCEs indicate the intrinsic synergistic effects between the salt and the solvent when they coexist on electrode surfaces. Experimental and theoretical analyses reveal an intriguing general rule that the strong interactions between the salt and the solvent in the inner solvation sheath promote their intermolecular proton/charge transfer reactions, which dictates the properties of the electrode/electrolyte interphases and thus the battery performances.

10.
Adv Mater ; 32(40): e2001136, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32876959

RESUMEN

Evaluating the alkaline water electrolysis (AWE) at 50-80 °C required in industry can veritably promote practical applications. Here, the thermally induced complete reconstruction (TICR) of molybdate oxygen evolution reaction (OER) pre-catalysts at 51.9 °C and its fundamental mechanism are uncovered. The dynamic reconstruction processes, the real active species, and stereoscopic structural characteristics are identified by in situ low-/high-temperature Raman, ex situ microscopy, and electron tomography. The completely reconstructed (CR) catalyst (denoted as cat.-51.9) is interconnected by thermodynamically stable (oxy)hydroxide nanoparticles, with abundant boundaries and low crystallinity. For alkaline OER, cat.-51.9 exhibits a low overpotential (282.3 mV at 20 mA cm-2 , 25.0 °C) and ultrastable catalysis at 51.9 °C (250 h, with a negligible activity decay of 19.6 µV h-1 ). The experimental observations combined with theoretical analyses confirm the fast catalytic kinetics enabled by the co-effect of boundaries and vacancies. The coupled cat.-51.9 and MoO2 -Ni hydrogen-evolving arrays provide stable electrolysis operation at 51.9 °C for 220 h. This work uncovers new reconstruction phenomenon of pre-catalysts under realistic conditions and exceptional durability of CR catalysts toward practical high-temperature AWE.

11.
Chem Soc Rev ; 49(10): 3142-3186, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32249862

RESUMEN

Metal-organic frameworks (MOFs) as a new kind of porous crystalline materials have attracted much interest in many applications due to their high porosity, diverse structures, and controllable chemical structures. However, the specific geometrical morphologies, limited functions and unsatisfactory performances of pure MOFs hinder their further applications. In recent years, an efficient approach to synthesize new composites to overcome the above issues has been achieved, by integrating MOF coatings with other functional materials, which have synergistic advantages in many potential applications, including batteries, supercapacitors, catalysis, gas storage and separation, sensors, drug delivery/cytoprotection and so on. Nevertheless, the systemic synthesis strategies and the relationships between their structures and application performances have not been reviewed comprehensively yet. This review emphasizes the recent advances in versatile synthesis strategies and broad applications of MOF coatings. A comprehensive discussion of the fundamental chemistry, classifications and functions of MOF coatings is provided first. Next, by modulating the different states (e.g. solid, liquid, and gas) of metal ion sources and organic ligands, the synthesis methods for MOF coatings on functional materials are systematically summarized. Then, many potential applications of MOF coatings are highlighted and their structure-property correlations are discussed. Finally, the opportunities and challenges for the future research of MOF coatings are proposed. This review on the deep understanding of MOF coatings will bring better directions into the rational design of high-performance MOF-based materials and open up new opportunities for MOF applications.

12.
Nat Nanotechnol ; 14(6): 594-601, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31036907

RESUMEN

Despite considerable efforts to stabilize lithium metal anode structures and prevent dendrite formation, achieving long cycling life in high-energy batteries under realistic conditions remains extremely difficult due to a combination of complex failure modes that involve accelerated anode degradation and the depletion of electrolyte and lithium metal. Here we report a self-smoothing lithium-carbon anode structure based on mesoporous carbon nanofibres, which, coupled with a lithium nickel-manganese-cobalt oxide cathode with a high nickel content, can lead to a cell-level energy density of 350-380 Wh kg-1 (counting all the active and inactive components) and a stable cycling life up to 200 cycles. These performances are achieved under the realistic conditions required for practical high-energy rechargeable lithium metal batteries: cathode loading ≥4.0 mAh cm-2, negative to positive electrode capacity ratio ≤2 and electrolyte weight to cathode capacity ratio ≤3 g Ah-1. The high stability of our anode is due to the amine functionalization and the mesoporous carbon structures that favour smooth lithium deposition.

13.
Nanoscale ; 10(21): 9856-9861, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29790551

RESUMEN

The stability of non-precious metal-based electrocatalysts for the acidic hydrogen evolution reaction (HER) is of great importance. Here, we have used nickel cyclotetraphosphate (Ni2P4O12) nanosheet arrays as a HER electrocatalyst for the first time. The Ni2P4O12 arrays were obtained through a facile low-temperature phosphorylation process and possess superior HER catalytic activities and stability in acid. The Ni2P4O12 delivers a small overpotential of 131.8 mV at -10 mA cm-2 and a low Tafel slope of 47.8 mV dec-1 in 0.5 M H2SO4, comparable to most of the non-precious metal-based catalysts. Importantly, the Ni2P4O12 shows a negligible potential change (6.5 mV) over 80 000 s continuous testing in acid. The remarkable catalytic performances of Ni2P4O12 are mainly attributed to the inductive effect of P4O124- and its polymer-like structure, promoting it as a potential acid-stable HER electrocatalyst.

14.
Nano Lett ; 17(12): 7773-7781, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29131634

RESUMEN

Earth-abundant metal-based nanostructured materials have been widely studied for potential energy conversion and storage. However, controlled synthesis of functional nanostructures with high electron conductivity, high reaction activity, and structural stability is still a formidable challenge for further practical applications. Herein, for the first time, we develop a facile, efficient, and general method for the oriented synthesis of precise carbon-confined nanostructures by low-pressure vapor superassembly of a thin metal-organic framework (MOF) shell and subsequent controlled pyrolysis. The selected nanostructured metal oxide precursors not only act as metal ion sources but also orient the superassembly of gaseous organic ligands through the coordination reactions under the low-pressure condition, resulting in the formation of a tunable MOF shell on their surfaces. This strategy is further successfully extended to obtain various precise carbon-confined nanostructures with diverse compositions and delicate morphologies. Notably, these as-prepared carbon-confined architectures exhibit outstanding electrochemical performances in water splitting and lithium storage. The remarkable performances are mainly attributed to the synergistic effect from appropriate chemical compositions and stable carbon-confined structures. This synthetic approach and proposed mechanism open new avenues for the development of functional nanostructured materials in many frontier fields.

15.
Nanoscale ; 9(46): 18216-18222, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29164220

RESUMEN

Soft carbon, which possesses the advantages of low cost and considerable potassium storage capacity, has been widely studied as an anode in K-ion batteries (KIBs). Herein, we constructed a novel polycrystalline semi-hollow microrods-structured soft carbon as an anode in KIBs, which exhibited both high capacity and excellent cycling stability.

16.
Nat Commun ; 8(1): 460, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878210

RESUMEN

The abundance of sodium resources indicates the potential of sodium-ion batteries as emerging energy storage devices. However, the practical application of sodium-ion batteries is hindered by the limited electrochemical performance of electrode materials, especially at the anode side. Here, we identify alkaline earth metal vanadates as promising anodes for sodium-ion batteries. The prepared calcium vanadate nanowires possess intrinsically high electronic conductivity (> 100 S cm-1), small volume change (< 10%), and a self-preserving effect, which results in a superior cycling and rate performance and an applicable reversible capacity (> 300 mAh g-1), with an average voltage of ∼1.0 V. The specific sodium-storage mechanism, beyond the conventional intercalation or conversion reaction, is demonstrated through in situ and ex situ characterizations and theoretical calculations. This work explores alkaline earth metal vanadates for sodium-ion battery anodes and may open a direction for energy storage.The development of suitable anode materials is essential to advance sodium-ion battery technologies. Here the authors report that alkaline earth metal vanadates are promising candidates due to the favorable electrochemical properties and interesting sodium-storage mechanism.

17.
J Am Chem Soc ; 139(24): 8212-8221, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28541686

RESUMEN

Carbon nanotubes (CNTs) are of great interest for many potential applications because of their extraordinary electronic, mechanical and structural properties. However, issues of chaotic staking, high cost and high energy dissipation in the synthesis of CNTs remain to be resolved. Here we develop a facile, general and high-yield strategy for the oriented formation of CNTs from metal-organic frameworks (MOFs) through a low-temperature (as low as 430 °C) pyrolysis process. The selected MOF crystals act as a single precursor for both nanocatalysts and carbon sources. The key to the formation of CNTs is obtaining small nanocatalysts with high activity during the pyrolysis process. This method is successfully extended to obtain various oriented CNT-assembled architectures by modulating the corresponding MOFs, which further homogeneously incorporate heteroatoms into the CNTs. Specifically, nitrogen-doped CNT-assembled hollow structures exhibit excellent performances in both energy conversion and storage. On the basis of experimental analyses and density functional theory simulations, these superior performances are attributed to synergistic effects between ideal components and multilevel structures. Additionally, the appropriate graphitic N doping and the confined metal nanoparticles in CNTs both increase the densities of states near the Fermi level and reduce the work function, hence efficiently enhancing its oxygen reduction activity. The viable synthetic strategy and proposed mechanism will stimulate the rapid development of CNTs in frontier fields.

18.
Nano Lett ; 17(1): 544-550, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-27959573

RESUMEN

K-ion battery (KIB) is a new-type energy storage device that possesses potential advantages of low-cost and abundant resource of K precursor materials. However, the main challenge lies on the lack of stable materials to accommodate the intercalation of large-size K-ions. Here we designed and constructed a novel earth abundant Fe/Mn-based layered oxide interconnected nanowires as a cathode in KIBs for the first time, which exhibits both high capacity and good cycling stability. On the basis of advanced in situ X-ray diffraction analysis and electrochemical characterization, we confirm that interconnected K0.7Fe0.5Mn0.5O2 nanowires can provide stable framework structure, fast K-ion diffusion channels, and three-dimensional electron transport network during the depotassiation/potassiation processes. As a result, a considerable initial discharge capacity of 178 mAh g-1 is achieved when measured for KIBs. Besides, K-ion full batteries based on interconnected K0.7Fe0.5Mn0.5O2 nanowires/soft carbon are assembled, manifesting over 250 cycles with a capacity retention of ∼76%. This work may open up the investigation of high-performance K-ion intercalated earth abundant layered cathodes and will push the development of energy storage systems.

19.
Phys Chem Chem Phys ; 18(32): 22146-53, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27443983

RESUMEN

Compared with a two dimensional graphene sheet, a three dimensional (3D) graphene sponge has a continuous conductive structure and numerous pores, which are beneficial for sulfur utilization and anchoring. However, strategies for the construction of 3D graphene sponges composited with sulfur nanoparticles (3DGS) are either energy consuming or involve toxic reagents. Herein, a 3DGS is fabricated via a reduction induced self-assembly method, which is simple but facile and scalable. The structural design of this 3DGS promises fast Li(+) transport, superior electrolyte absorbability and effective electrochemical redox reactions of sulfur. As a result, this 3DGS achieves a stable capacity of 580 mA h g(-1) after 500 cycles at a high rate of 1.5 A g(-1), which corresponds to a low fading rate of 0.043% per cycle. The present study effectively demonstrates that the 3D construction strategy is propitious for obtaining flexible high performance Li-S batteries.

20.
Nano Lett ; 16(3): 1523-9, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26882441

RESUMEN

Graphene has been widely used to enhance the performance of energy storage devices due to its high conductivity, large surface area, and excellent mechanical flexibility. However, it is still unclear how graphene influences the electrochemical performance and reaction mechanisms of electrode materials. The single-nanowire electrochemical probe is an effective tool to explore the intrinsic mechanisms of the electrochemical reactions in situ. Here, pure MnO2 nanowires, reduced graphene oxide/MnO2 wire-in-scroll nanowires, and porous graphene oxide/MnO2 wire-in-scroll nanowires are employed to investigate the capacitance, ion diffusion coefficient, and charge storage mechanisms in single-nanowire electrochemical devices. The porous graphene oxide/MnO2 wire-in-scroll nanowire delivers an areal capacitance of 104 nF/µm(2), which is 4.0 and 2.8 times as high as those of reduced graphene oxide/MnO2 wire-in-scroll nanowire and MnO2 nanowire, respectively, at a scan rate of 20 mV/s. It is demonstrated that the reduced graphene oxide wrapping around the MnO2 nanowire greatly increases the electronic conductivity of the active materials, but decreases the ion diffusion coefficient because of the shielding effect of graphene. By creating pores in the graphene, the ion diffusion coefficient is recovered without degradation of the electron transport rate, which significantly improves the capacitance. Such single-nanowire electrochemical probes, which can detect electrochemical processes and behavior in situ, can also be fabricated with other active materials for energy storage and other applications in related fields.


Asunto(s)
Técnicas Electroquímicas/instrumentación , Grafito/química , Compuestos de Manganeso/química , Nanocables/química , Óxidos/química , Capacidad Eléctrica , Transporte de Electrón , Diseño de Equipo , Iones/química , Nanocables/ultraestructura , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...