Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37177154

RESUMEN

As one of the most promising candidates for all-solid-state sodium-ion batteries and sodium-metal batteries, polyvinylidene difluoride (PVDF) and amorphous hexafluoropropylene (HFP) copolymerized polymer solid electrolytes still suffer from a relatively low room temperature ionic conductivity. To modify the properties of PVDF-HEP copolymer electrolytes, we introduce the graphitic C3N4 (g-C3N4) nanosheets as a novel nanofiller to form g-C3N4 composite solid polymer electrolytes (CSPEs). The analysis shows that the g-C3N4 filler can not only modify the structure in g-C3N4CSPEs by reducing the crystallinity, compared to the PVDF-HFP solid polymer electrolytes (SPEs), but also promote a further dissociation with the sodium salt through interaction between the surface atoms of the g-C3N4 and the sodium salt. As a result, enhanced electrical properties such as ionic conductivity, Na+ transference number, mechanical properties and thermal stability of the composite electrolyte can be observed. In particular, a low Na deposition/dissolution overpotential of about 100 mV at a current density of 1 mA cm-2 was found after 160 cycles with the incorporation of g-C3N4. By applying the g-C3N4 CSPEs in the sodium-metal battery with Na3V2(PO4)3 cathode, the coin cell battery exhibits a lower polarization voltage at 90 mV, and a stable reversible capacity of 93 mAh g-1 after 200 cycles at 1 C.

2.
Polymers (Basel) ; 15(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36616551

RESUMEN

One of the most critical challenges for commercialization of sodium-ion battery (SIB) is to develop carbon anodes with high capacity and good rate performance. Graphene would be an excellent SIB anode candidate due to its success in various kinds of batteries. Liquid-phase exfoliation (LPE) method is an inexpensive, facile and potentially scalable method to produce less-defected graphene sheets. In this work, we developed an improved, dispersant-assisted LPE method to produce graphene composite materials from raw graphite with high yield and better quality for SIB anode. Here, bacterial cellulose (BC) was used as a green dispersant/stabilizer for LPE, a "spacer" for anti-restacking, as well as a carbon precursor in the composite. As a result, the carbonized BC (CBC)/LPE graphene (LEGr) presented improved performance compared to composite with graphene prepared by Hummers method. It exhibited a specific capacity of 233 mAh g-1 at a current density of 20 mA g-1, and 157 mAh g-1 after 200 cycles at a high current density of 100 mA g-1 with capacity retention rate of 87.73%. This method not only provides new insight in graphene composites preparation, but also takes a new step in the exploration of anode materials for sodium-ion batteriesSIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...