Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(5)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38792774

RESUMEN

African swine fever virus (ASFV) poses a significant threat to the global pig industry, necessitating accurate and efficient diagnostic methods for its infection. Previous studies have often focused on a limited number of epitopes from a few proteins for detecting antibodies against ASFV. Therefore, the current study aimed to use multiple B-cell epitopes in developing an indirect Enzyme-Linked Immunosorbent Assay (ELISA) for enhanced detection of ASFV antibodies. For the expression of recombinant protein, k3 derived from 27 multiple peptides of 11 ASFV proteins, such as p72, pA104R, pB602L, p12, p14.5, p49, pE248R, p30, p54, pp62, and pp220, was used. To confirm the expression of the recombinant protein, we used the Western blotting analysis. The purified recombinant K3 protein served as the antigen in our study, and we employed the indirect ELISA technique to detect anti-ASFV antibodies. The present finding showed that there was no cross-reactivity with antibodies targeting Foot-and-mouth disease virus (FMDV), Porcine circovirus type 2 (PCV2), Pseudorabies virus (PRV), Porcine reproductive and respiratory syndrome virus (PRRSV), and Classical swine fever virus (CSFV). Moreover, the current finding was sensitive enough to find anti-ASFV in serum samples that had been diluted up to 32 times. The test (k3-iELISA) showed diagnostic specificity and sensitivity of 98.41% and 97.40%, respectively. Moreover, during the present investigation, we compared the Ingenasa kit and the k3-iELISA to test clinical pig serum, and the results revealed that there was 99.00% agreement between the two tests, showing good detection capability of the k3-iELISA method. Hence, the current finding showed that the ELISA kit we developed can be used for the rapid detection of ASFV antibodies and used as an alternative during serological investigation of ASF in endemic areas.

2.
Parasit Vectors ; 17(1): 82, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389104

RESUMEN

BACKGROUND: Traditional methods for detecting insect-borne bacterial pathogens are time-consuming and require specialized laboratory facilities, limiting their applicability in areas without access to such resources. Consequently, rapid and efficient detection methods for insect-borne bacterial diseases have become a pressing need in disease prevention and control. METHODS: We aligned the ribosomal 16S rRNA sequences of seven bacterial species (Staphylococcus aureus, Shigella flexneri, Aeromonas caviae, Vibrio vulnificus, Salmonella enterica, Proteus vulgaris, and Yersinia enterocolitica) by DNASTAR Lasergene software. Using DNASTAR Lasergene and Primer Premier software, we designed universal primers RLB-F and RLB-R, two species-specific probes for each pathogen, and a universal probe (catch-all). The PCR products of seven standard strains were hybridized with specific oligonucleotide probes fixed on the membrane for specific experimental procedures. To evaluate the sensitivity of PCR-RLB, genomic DNA was serially diluted from an initial copy number of 1010 to 100 copies/µl in distilled water. These dilutions were utilized as templates for the PCR-RLB sensitivity analysis. Simultaneous detection of seven fly-borne bacterial pathogens from field samples by the established PCR-RLB method was conducted on a total of 1060 houseflies, collected from various environments in Lanzhou, China. RESULTS: The established PCR-RLB assay is capable of detecting bacterial strains of about 103 copies/µl for S. aureus, 103 copies/µl for S. flexneri, 105 copies/µl for A. caviae, 105 copies/µl for V. vulnificus, 100 copies/µl for S. enterica, 105 copies/µl for P. vulgaris, and 100 copies/µl for Y. enterocolitica. The results demonstrate that the detection rate of the established PCR-RLB method is higher (approximately 100 times) compared to conventional PCR. This method was applied to assess the bacterial carrier status of flies in various environments in Lanzhou, China. Among the seven bacterial pathogens carried by flies, S. enterica (34.57%), S. flexneri (32.1%), and Y. enterocolitica (20.37%) were found to be the predominant species. CONCLUSIONS: Overall, this research shows that the rapid and efficient PCR-RLB detection technology could be a useful for surveillance and therefore effective prevention and control the spread of insect-borne diseases. Meanwhile, the experimental results indicate that urban sanitation and vector transmission sources are important influencing factors for pathogen transmission.


Asunto(s)
Bacterias , Dípteros , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Dípteros/genética , Hibridación de Ácido Nucleico/métodos , ARN Ribosómico 16S/genética , Sensibilidad y Especificidad , Staphylococcus aureus
3.
J Virol ; 97(10): e0121723, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37815352

RESUMEN

IMPORTANCE: African swine fever virus (ASFV) completes the replication process by resisting host antiviral response via inhibiting interferon (IFN) secretion and interferon-stimulated genes (ISGs) function. 2', 5'-Oligoadenylate synthetase gene 1 (OAS1) has been reported to inhibit the replication of various RNA and some DNA viruses. However, the regulatory mechanisms involved in the ASFV-induced IFN-related pathway still need to be fully elucidated. Here, we found that OAS1, as a critical host factor, inhibits ASFV replication in an RNaseL-dependent manner. Furthermore, overexpression of OAS1 can promote the activation of the JAK-STAT pathway promoting innate immune responses. In addition, OAS1 plays a new function, which could interact with ASFV P72 protein to suppress ASFV infection. Mechanistically, OAS1 enhances the proteasomal degradation of P72 by promoting TRIM21-mediated ubiquitination. Meanwhile, P72 inhibits the production of avSG and affects the interaction between OAS1 and DDX6. Our findings demonstrated OAS1 as an important target against ASFV replication and revealed the mechanisms and intrinsic regulatory relationships during ASFV infection.


Asunto(s)
2',5'-Oligoadenilato Sintetasa , Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Proteínas de Motivos Tripartitos , Replicación Viral , Animales , Virus de la Fiebre Porcina Africana/fisiología , Proteínas de la Cápside/metabolismo , Interferones/metabolismo , Quinasas Janus/metabolismo , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Porcinos , Proteínas de Motivos Tripartitos/metabolismo , 2',5'-Oligoadenilato Sintetasa/metabolismo
4.
J Clin Microbiol ; 61(6): e0119722, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37154731

RESUMEN

African swine fever (ASF) is one of the most lethal and devastating diseases of domestic and wild swine. The continual spread and frequent outbreaks of ASF have seriously threatened the pig and pig-related industries, causing great socioeconomic losses at unprecedented proportions. Although ASF has been documented for a century, no effective vaccine or antiviral treatment is currently available. Nanobodies (Nbs) derived from heavy-chain-only antibodies in camelids have been discovered to be effective as therapeutics and robust biosensors in imaging and diagnostic applications. In the present study, a high-quality phage display library containing specific Nbs raised against ASFV proteins was successfully constructed, and 19 nanobodies specific to ASFV p30 were preliminarily identified by phage display technology. After extensive evaluation, nanobodies Nb17 and Nb30 were employed as immunosensors and applied to develop a sandwich enzyme-linked immunosorbent assay (ELISA) for the detection of ASFV in clinical specimens. This immunoassay showed a detection limit of approximately 1.1 ng/mL target protein and 102.5 hemadsorption (HAD50/mL) of ASFV and exhibited high specificity with no cross-reaction with the other porcine viruses tested. The performances of the newly developed assay and a commercial kit in testing 282 clinical swine samples were very similar (93.62% agreement). However, the novel sandwich Nb-ELISA showed higher sensitivity than the commercial kit when serial dilutions of ASFV-positive samples were tested. The present study describes a valuable alternative technique for the detection and surveillance of ASF in endemic regions. Furthermore, additional nanobodies specific to ASFV may be developed using the generated VHH library and employed in different biotechnology fields.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Bacteriófagos , Técnicas Biosensibles , Anticuerpos de Dominio Único , Porcinos , Animales , Fiebre Porcina Africana/diagnóstico , Inmunoensayo
6.
Virol Sin ; 38(1): 96-107, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36435451

RESUMEN

African swine fever virus (ASFV) is an important pathogen that causes a highly contagious and lethal disease in swine, for which neither a vaccine nor treatment is available. The DNA repair enzyme 8-oxoguanine DNA glycosylase 1 (OGG1), which excises the oxidative base lesion 8-oxo-7,8-dihydroguanine (8-oxoG), has been linked to the pathogenesis of different diseases associated with viral infections. However, the role of OGG1-base excision repair (BER) in ASFV infection has been poorly investigated. Our study aimed to characterize the alteration of host reactive oxygen species (ROS) and OGG1 and to analyse the role of OGG1 in ASFV infection. We found that ASFV infection induced high levels and dynamic changes in ROS and 8-oxoG and consistently increased the expression of OGG1. Viral yield, transcription level, and protein synthesis were reduced in ASFV-infected primary alveolar macrophages (PAMs) treated by TH5487 or SU0268 inhibiting OGG1. The expression of BER pathway associated proteins of ASFV was also suppressed in OGG1-inhibited PAMs. Furthermore, OGG1 was found to negatively regulate interferon ß (IFN-ß) production during ASFV infection and IFN-ß could be activated by OGG1 inhibition with TH5487 and SU0268, which blocked OGG1 binding to 8-oxoG. Additionally, the interaction of OGG1 with viral MGF360-14-L protein could disturb IFN-ß production to further affect ASFV replication. These results suggest that OGG1 plays the crucial role in successful viral infection and OGG1 inhibitors SU0268 or TH5487 could be used as antiviral agents for ASFV infection.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Especies Reactivas de Oxígeno/metabolismo , Reparación del ADN , Estrés Oxidativo , Replicación Viral
7.
Front Microbiol ; 13: 1013678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246209

RESUMEN

African swine fever (ASF), caused by African swine fever virus (ASFV), is a fatal infectious disease of pigs and causes great socioeconomic losses globally. The reliable diagnostic method is critical for prevention and control of the disease. In this study, an improved Luciferase immunosorbent assay (LISA) for detecting ASF was developed using the cell lysates containing ASFV p35 protein fused with a reporter Nano-luciferase (p35-Luc protein). The improved method avoids the complicate procedures of immobilizing the serum samples with protein G in the normal LISA method, and replaced by directly coating the serum samples with carbonate buffer, therefore reduces the productive cost and simplifies the operation procedures. The p35-Luc LISA exhibited high specificity for anti-ASFV sera while no cross-reactions with the sera against other swine viruses. The detection limit of the p35-Luc LISA was shown to be at least four times higher than that of the p35 based indirect ELISA established in our lab. The receiver operating characteristic (ROC) analysis showed the 96.36% relative specificity and 96.97% relative sensitivity of the p35-Luc LISA with the cutoff values of 3.55 as compared to the commercial Ingezim p72-ELISA kit. Furthermore, a total of 248 serum samples were tested by both the p35-Luc LISA and commercial Ingezim p72-ELISA kit, and there was a high degree of agreement (97.6%, kappa = 0.9753) in the performance of the two assays. Collectively, the improved LISA based on the p35-Luc protein could be used as a rapid, ultrasensitive, cost-effective and reliable diagnostic tool for serological survey of ASF in pig farms.

8.
Front Microbiol ; 13: 1017792, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312984

RESUMEN

African swine fever virus (ASFV) is a large and very complex DNA virus. The major capsid protein p72 is the most predominant structural protein and constitutes the outmost icosahedral capsid of the virion. In the present study, the nanobodies against ASFV p72 protein were screened from a camelid immune VHH library by phage display technique. Nine distinct nanobodies were identified according to the amino acid sequences of the complementary determining regions (CDRs), and contain typical amino acid substitutions in the framework region 2 (FR2). Six nanobodies were successfully expressed in E. coli, and their specificity and affinity to p72 protein were further evaluated. The results showed that nanobodies Nb25 had the best affinity to both recombinant and native p72 protein of ASFV. The Nb25 possesses an extremely long CDR3 with 23 amino acids compared with other nanobodies, which may allow this nanobody to access the hidden epitopes of target antigen. Furthermore, the Nb25 can specifically recognize the virus particles captured by polyclonal antibody against ASFV in a sandwich immunoassay, and its application as a biosensor to target virus in PAM cells was verified by an immunofluorescence assay. Nanobodies have been proven to possess many favorable properties with small size, high affinity and specificity, easier to produce, low costs and deep tissue penetration that make them suitable for various biotechnological applications. These findings suggest that nanobody Nb25 identified herein could be a valuable alternative tool and has potential applications in diagnostic and basic research on ASFV.

9.
Microbiol Spectr ; 10(4): e0241921, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35758684

RESUMEN

African swine fever (ASF), an acute, severe, highly contagious disease caused by African swine fever virus (ASFV) infection in domestic pigs and boars, has a mortality rate of up to 100%. Because effective vaccines and treatments for ASF are lacking, effective control of the spread of ASF remains a great challenge for the pig industry. Host epigenetic regulation is essential for the viral gene transcription. Bromodomain and extraterminal (BET) family proteins, including BRD2, BRD3, BRD4, and BRDT, are epigenetic "readers" critical for gene transcription regulation. Among these proteins, BRD4 recognizes acetylated histones via its two bromodomains (BD1 and BD2) and recruits transcription factors, thereby playing a pivotal role in transcriptional regulation and chromatin remodeling during viral infection. However, how BET/BRD4 regulates ASFV replication and gene transcription is unknown. Here, we randomly selected 12 representative BET family inhibitors and compared their effects on ASFV infection in pig primary alveolar macrophages (PAMs). These were found to inhibit viral infection by interfering viral replication. The four most effective inhibitors (ARV-825, ZL0580, I-BET-762, and PLX51107) were selected for further antiviral activity analysis. These BET/BRD4 inhibitors dose dependently decreased the ASFV titer, viral RNA transcription, and protein production in PAMs. Collectively, we report novel function of BET/BRD4 inhibitors in inducing suppression of ASFV infection, providing insights into the role of BET/BRD4 in the epigenetic regulation of ASFV and potential new strategies for ASF prevention and control. IMPORTANCE Due to the continuing spread of the ASFV in the world and the lack of commercial vaccines, the development of improved control strategies, including antiviral drugs, is urgently needed. BRD4 is an important epigenetic factor and has been commonly used for drug development for tumor treatment. Furthermore, the latest research showed that BET/BRD4 inhibition could suppress replication of virus. In this study, we first showed the inhibitory effect of agents targeting BET/BRD4 on ASFV infection with no significant host cytotoxicity. Then, we found four BET/BRD4 inhibitors that can inhibit ASFV replication, RNA transcription, and protein synthesis. Our findings support the hypothesis that BET/BRD4 can be considered as attractive host targets in antiviral drug discovery against ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Fiebre Porcina Africana/genética , Fiebre Porcina Africana/prevención & control , Virus de la Fiebre Porcina Africana/genética , Animales , Antivirales/farmacología , Epigénesis Genética , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Porcinos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Sheng Wu Gong Cheng Xue Bao ; 38(5): 1837-1846, 2022 May 25.
Artículo en Chino | MEDLINE | ID: mdl-35611732

RESUMEN

We researched the mechanism of African swine fever virus (ASFV) protein E248R in regulating the cGAS-STING pathway. First, we verified via the dual-luciferase reporter assay system that E248R protein inhibited the secretion of IFN-ß induced by cGAS-STING or HT-DNA in a dose-dependent manner. The relative quantitative PCR analysis indicated that the overexpression of E248R inhibited HT-DNA-induced transcription of IFN-b1, RANTES, IL-6, and TNF-α in PK-15 cells. Next, we found that E248R interacted with STING by co-immunoprecipitation assay and laser confocal microscopy. Finally, we demonstrated that E248R inhibited the expression of STING protein by using Western blotting. We demonstrated for the first time that the E248R protein of ASFV suppressed the host innate immune response via inhibiting STING expression. The results are pivotal in extending the understanding of the ASFV immune escape and can guide the design of vaccines against ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Virus de la Fiebre Porcina Africana/genética , Animales , ADN , Inmunidad Innata , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Porcinos
11.
Front Physiol ; 13: 811628, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250616

RESUMEN

Aquaporins (AQPs) are important functional proteins and are widely present in the cell membrane of almost all organisms, mediating transmembrane transport of liquid and other solutes. Much is known about the molecular characterization of AQPs in other tick species; however, nothing is known about them in Haemaphysalis qinghaiensis. In this study, we first sequenced the transcript variants of AQPs in H. qinghaiensis (HqAQPs), analyzed the biological structure features of AQPs, and investigated the pattern of gene expression of the AQP gene of H. qinghaiensis in different tick tissues and stages to predict their biological functions. In conclusion, four AQP transcript variants (i.e., HqAQP1-1, HqAQP1-2, HqAQP1-3, and HqAQP1-4) of H. qinghaiensis were found, and the sequences were comparable with its orthologs from the reported tick species. Gene expression of AQPs in different tick tissues and stages showed the higher expression level in salivary glands and gut of adult female, as well as in the female and nymph than in Malpighian tubules, ovary, male, larvae, and egg. Further studies will be performed to evaluate the function of HqAQPs against H. qinghaiensis infestation on animals.

12.
Front Vet Sci ; 8: 682963, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322535

RESUMEN

Wildlife is involved in the maintenance and transmission of various tick-borne pathogens. The objective of the present study was to determine the occurrence and diversity of tick-borne pathogens in free-ranging wild animals collected from Tangjiahe National Nature Reserve of China. Blood or liver samples from 13 wild animals (5 takin, 3 Himalayan goral, 3 Reeves' muntjac, 1 forest musk deer, and 1 wild boar) were collected and screened for piroplasm, Anaplasma spp., Ehrlichia spp., and spotted fever group (SFG) rickettsiae by PCR-based on different gene loci. Three Theileria species, a potential novel Theileria parasite (Theileria sp. T4) and two Anaplasma species were identified in those wildlife. Theileria capreoli was found in Himalayan goral, Reeves' muntjac, and forest musk deer; Theileria luwenshuni, Theileria uilenbergi, and a potential novel, Theileria parasite (Theileria sp. T4), were identified in takin. Meanwhile, Anaplasma bovis was identified in Himalayan goral, takin, Reeves' muntjac, forest musk deer, and wild boar; Anaplasma phagocytophilum and related strains was found in takin, Reeves' muntjac, and forest musk deer. All wildlife included in this study was negative for Babesia, Anaplasma ovis, Anaplasma marginale, Ehrlichia, and SFG rickettsiae. Moreover, coinfection involving Theileria spp. and Anaplasma spp. was observed in eight wild animals. This study provided the first evidence of tick-borne pathogens in free-ranging wild animals from the nature reserve, where contact between domestic and wild animals rarely occurs.

13.
J Immunol ; 206(8): 1844-1857, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33712518

RESUMEN

African swine fever virus (ASFV) is a devastating infectious disease in pigs, severely threatening the global pig industry. To efficiently infect animals, ASFV must evade or inhibit fundamental elements of the innate immune system, namely the type I IFN response. In this study, we identified that ASFV MGF-505-7R protein exerts a negative regulatory effect on STING-dependent antiviral responses. MGF-505-7R interacted with STING and inhibited the cGAS-STING signaling pathway at STING level. MGF-505-7R overexpression either degraded STING or STING expression was reduced in ASFV-infected cells via autophagy, whereas STING expression was elevated in MGF-505-7R-deficient ASFV-infected cells. We further found that MGF-505-7R promoted the expression of the autophagy-related protein ULK1 to degrade STING, whereas ULK1 was elevated in MGF-505-7R-deficient ASFV-infected cells. Moreover, MGF-505-7R-deficient ASFV induced more IFN-ß production than wild-type ASFV and was attenuated in replication compared with wild-type ASFV. The replicative ability of MGF-505-7R-deficient ASFV was also attenuated compared with wild-type. Importantly, MGF-505-7R-deficient ASFV was fully attenuated in pigs. Our results showed for the first time, to our knowledge, a relationship involving the cGAS-STING pathway and ASFV MGF-505-7R, contributing to uncover the molecular mechanisms of ASFV virulence and to the rational development of ASFV vaccines.


Asunto(s)
Virus de la Fiebre Porcina Africana , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/metabolismo , Animales , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Porcinos , Proteínas Virales , Virulencia
14.
Ticks Tick Borne Dis ; 12(3): 101677, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33549977

RESUMEN

Anaplasma ovis, a tick-borne intra-erythrocytic Gram-negative bacterium, is a causative agent of ovine anaplasmosis. It is known that Dermacentor ticks act as biological vectors for A. ovis. VirD4 is the machine component of Type IV Secretion System of A. ovis. To better understand the pathogen-vector interaction, VirD4 was used as a bait protein for screening midgut proteins of Dermacentor silvarum via yeast two-hybrid mating assay. As a result, a ribosomal protein RL12 was identified from the midgut cDNA library of D. silvarum. For further validation, using in vitro Glutathione S-transferase (GST) pull-down assay, interaction between the proteins, GST-RL12 and HIS-VirD4, was observed in Western blot analysis. The study is first of its kind reporting a D. silvarum midgut protein interaction with VirD4 from A. ovis. Functional annotations showed some important cellular processes are attributed to the protein, particularly in the stringent response and biogenesis. The results of the study suggest the involvement of the VirD4-RL12 interaction in the regulation of signaling pathways, which is a tool for understanding the pathogen-vector interaction.


Asunto(s)
Anaplasma ovis/genética , Vectores Arácnidos/genética , Proteínas de Artrópodos/genética , Proteínas Bacterianas/genética , Dermacentor/genética , Proteínas Ribosómicas/genética , Anaplasma ovis/metabolismo , Animales , Vectores Arácnidos/metabolismo , Vectores Arácnidos/microbiología , Proteínas de Artrópodos/metabolismo , Proteínas Bacterianas/metabolismo , Dermacentor/metabolismo , Dermacentor/microbiología , Sistema Digestivo/metabolismo , Sistema Digestivo/microbiología , Proteínas Ribosómicas/metabolismo
15.
Front Immunol ; 12: 808545, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975923

RESUMEN

African swine fever virus (ASFV) infection can result in lethal disease in pigs. ASFV encodes 150-167 proteins, of which only approximately 50 encoded viral structure proteins are functionally known. ASFV also encodes some nonstructural proteins that are involved in the regulation of viral transcription, viral replication and evasion from host defense. However, the understanding of the molecular correlates of the severity of these infections is still limited. The purpose of this study was to compare host and viral gene expression differences and perform functional analysis in acutely infected, dead and cohabiting asymptomatic pigs infected with ASFV by using RNA-Seq technique; healthy pigs were used as controls. A total of 3,760 and 2,874 upregulated genes and 4,176 and 2,899 downregulated genes were found in healthy pigs vs. acutely infected, dead pigs or asymptomatic pigs, respectively. Additionally, 941 upregulated genes and 956 downregulated genes were identified in asymptomatic vs. acutely infected, dead pigs. Different alternative splicing (AS) events were also analyzed, as were gene chromosome locations, and protein-protein interaction (PPI) network prediction analysis was performed for significantly differentially expressed genes (DEGs). In addition, 30 DEGs were validated by RT-qPCR, and the results were consistent with the RNA-Seq results. We further analyzed the interaction between ASFV and its host at the molecular level and predicted the mechanisms responsible for asymptomatic pigs based on the selected DEGs. Interestingly, we found that some viral genes in cohabiting asymptomatic pigs might integrate into host genes (DP96R, I73R and L83L) or remain in the tissues of cohabiting asymptomatic pigs. In conclusion, the data obtained in the present study provide new evidence for further elucidating ASFV-host interactions and the ASFV infection mechanism and will facilitate the implementation of integrated strategies for controlling ASF spread.


Asunto(s)
Virus de la Fiebre Porcina Africana/patogenicidad , Fiebre Porcina Africana/virología , Perfilación de la Expresión Génica , Transcriptoma , Proteínas Virales/genética , Fiebre Porcina Africana/genética , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/metabolismo , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/metabolismo , Animales , Infecciones Asintomáticas , Regulación Viral de la Expresión Génica , Redes Reguladoras de Genes , Interacciones Huésped-Patógeno , Mapas de Interacción de Proteínas , RNA-Seq , Sus scrofa , Porcinos , Proteínas Virales/metabolismo
16.
J Virol ; 94(11)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188727

RESUMEN

Brain-resident microglia and myeloid cells (perivascular macrophages) are important HIV reservoirs in vivo, especially in the central nervous system (CNS). Despite antiretroviral therapy (ART), low-level persistent HIV replication in these reservoirs remains detectable, which contributes to neuroinflammation and neurological disorders in HIV-infected patients. New approaches complementary to ART to repress residual HIV replication in CNS reservoirs are needed. Our group has recently identified a BRD4-selective small molecule modulator (ZL0580) that induces the epigenetic suppression of HIV. Here, we examined the effects of this compound on HIV in human myeloid cells. We found that ZL0580 induces potent and durable suppression of both induced and basal HIV transcription in microglial cells (HC69) and monocytic cell lines (U1 and OM10.1). Pretreatment of microglia with ZL0580 renders them more refractory to latent HIV reactivation, indicating an epigenetic reprogramming effect of ZL0580 on HIV long terminal repeat (LTR) in microglia. We also demonstrate that ZL0580 induces repressive effect on HIV in human primary monocyte-derived macrophages (MDMs) by promoting HIV suppression during ART treatment. Mechanistically, ZL0580 inhibits Tat transactivation in microglia by disrupting binding of Tat to CDK9, a process key to HIV transcription elongation. High-resolution micrococcal nuclease mapping showed that ZL0580 induces a repressive chromatin structure at the HIV LTR. Taken together, our data suggest that ZL0580 represents a potential approach that could be used in combination with ART to suppress residual HIV replication and/or latent HIV reactivation in CNS reservoirs, thereby reducing HIV-associated neuroinflammation.IMPORTANCE Brain-resident microglia and perivascular macrophages are important HIV reservoirs in the CNS. Persistent viral replication and latent HIV reactivation in the CNS, even under ART, are believed to occur, causing neuroinflammation and neurological disorders in HIV-infected patients. It is critical to identify new approaches that can control residual HIV replication and/or latent HIV reactivation in these reservoirs. We here report that the BRD4-selective small molecule modulator, ZL0580, induces potent and durable suppression of HIV in human microglial and monocytic cell lines. Using an in vitro HIV-infected, ART-treated MDM model, we show that ZL0580 also induces suppressive effect on HIV in human primary macrophages. The significance of our research is that it suggests a potential new approach that has utility in combination with ART to suppress residual HIV replication and/or HIV reactivation in CNS reservoirs, thereby reducing neuroinflammation and neurological disorders in HIV-infected individuals.


Asunto(s)
Antirreumáticos/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Epigénesis Genética/efectos de los fármacos , Regulación Viral de la Expresión Génica/efectos de los fármacos , Infecciones por VIH/metabolismo , VIH-1/fisiología , Microglía , Monocitos , Factores de Transcripción/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Antirreumáticos/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/patología , Humanos , Microglía/metabolismo , Microglía/patología , Microglía/virología , Monocitos/metabolismo , Monocitos/patología , Monocitos/virología , Factores de Transcripción/metabolismo
17.
Parasit Vectors ; 13(1): 105, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32103780

RESUMEN

BACKGROUND: Anaplasma ovis is a gram-negative, tick-borne obligate intraerythrocytic pathogen, which causes ovine anaplasmosis in small ruminants worldwide. VirB10 of A. ovis is an integral component of the Type IV Secretion System (T4SS). The T4SS is used by bacteria to transfer DNA and/or proteins undeviatingly into the host cell to increase their virulence. To more thoroughly understand the interaction between A. ovis and Dermacentor silvarum, a vector containing the virb10 gene of A. ovis was used as a bait plasmid to screen interacting proteins from the cDNA library of the D. silvarum salivary gland using the yeast two-hybrid system. METHODS: The cDNA of the D. silvarum salivary gland was cloned into the pGADT7-SmaI vector (prey plasmid) to construct the yeast two-hybrid cDNA library. The virb10 gene was cloned into the pGBKT7 vector to generate a bait plasmid. Any gene auto-activation or toxicity effects in the yeast strain Y2HGold were excluded. The screening was performed by combining the bait and prey plasmids in yeast strains to identify positive preys. The positive preys were then sequenced, and the obtained sequences were subjected to further analyses using Gene Ontology, UniProt, SMART, and STRING. Additionally, the interaction between the bait and the prey was evaluated using the glutathione S-transferase (GST) pull-down assay. RESULTS: A total of two clones were obtained from the cDNA library using the yeast two-hybrid system, and the sequence analysis showed that both clones encoded the same large tegument protein, UL36. Furthermore, the proteins GST-UL36 and His-VirB10 were successfully expressed in vitro and the interaction between the two proteins was successfully demonstrated by the GST pull-down assay. CONCLUSIONS: To our knowledge, this study is the first to screen for D. silvarum salivary gland proteins that interact with A. ovis VirB10. The resulting candidate, UL36, is a multi-functional protein. Further investigations into the functionality of UL36 should be carried out, which might help in identifying novel prevention and treatment strategies for A. ovis infection. The present study provides a base for exploring and further understanding the interactions between A. ovis and D. silvarum.


Asunto(s)
Anaplasma ovis/metabolismo , Proteínas de Artrópodos/metabolismo , Proteínas Bacterianas/metabolismo , Dermacentor/metabolismo , Dermacentor/microbiología , Sistemas de Secreción Tipo IV/metabolismo , Anaplasma ovis/genética , Animales , Proteínas de Artrópodos/genética , Proteínas Bacterianas/genética , Dermacentor/genética , Interacciones Huésped-Parásitos , Unión Proteica , Glándulas Salivales/metabolismo , Glándulas Salivales/microbiología , Técnicas del Sistema de Dos Híbridos , Sistemas de Secreción Tipo IV/genética
18.
J Vet Diagn Invest ; 32(1): 44-50, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31845623

RESUMEN

We developed a SYBR green I-based reverse-transcription quantitative PCR (RT-qPCR) assay for bovine ephemeral fever virus (BEFV). Analytical sensitivity of the assay was ~ 100 times higher than conventional RT-PCR. The precision of the RT-qPCR established for RNA standards was high, with intra-assay and inter-assay coefficients of variation of 0.23-0.89% and 0.23-1.02%, respectively. The test was highly specific for BEFV strains, with no cross-reactivity with other viruses of veterinary significance. The assay detected BEFV RNA as early as 1 d post-infection (dpi) and up to 7-8 dpi in the blood samples of experimentally infected cattle. The most stable reference gene, peptidylprolyl isomerase A (PPIA), was selected for the quantification of BEFV. Viral RNA loads reached peak level at 3-5 dpi and then decreased rapidly through 7-8 dpi. Our assay provides a reliable approach for the detection of BEFV in the early infection stage and for use in the profiling of BEFV kinetics in vivo.


Asunto(s)
Virus de la Fiebre Efímera Bovina/aislamiento & purificación , Fiebre Efímera/virología , Compuestos Orgánicos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Benzotiazoles , Bovinos , Diaminas , Quinolinas , ARN Viral/genética
19.
Pathogens ; 8(3)2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533303

RESUMEN

Obligate intracellular bacteria belonging to the genus Anaplasma spp. are responsible for causing a hemolytic disease called anaplasmosis in animals, as well as in humans. This study was aimed at the molecular identification and genetic analysis of responsible causative agents of anaplasmosis beyond those already reported. A survey was performed during July and August 2018 in the Jhang District, Punjab, Pakistan. Four hundred and fifty blood samples from asymptomatic, tick-infested cattle were collected on FTA cards and tested for the Anaplasma spp. presence using nested-polymerase chain reaction (PCR) methods. The 16S ribosomal RNA gene sequences generated from the positive samples were used for genetic analysis of Anaplasma spp. The nested-PCR results showed the presence of two Anaplasma spp. with an overall prevalence rate of 10.44%, where the prevalence of A. bovis and A. phagocytophilum was 7.78% and 2.66%, respectively. The study portrayed new molecular data on the prevalence of Anaplasma spp. in the studied cattle population, indicating a potential threat to the human population as well.

20.
J Clin Invest ; 129(8): 3361-3373, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31329163

RESUMEN

HIV integrates its provirus into the host genome and establishes latent infection. Antiretroviral therapy (ART) can control HIV viremia, but cannot eradicate or cure the virus. Approaches targeting host epigenetic machinery to repress HIV, leading to an aviremic state free of ART, are needed. Bromodomain and extraterminal (BET) family protein BRD4 is an epigenetic reader involved in HIV transcriptional regulation. Using structure-guided drug design, we identified a small molecule (ZL0580) that induced epigenetic suppression of HIV via BRD4. We showed that ZL0580 induced HIV suppression in multiple in vitro and ex vivo cell models. Combination treatment of cells of aviremic HIV-infected individuals with ART and ZL0580 revealed that ZL0580 accelerated HIV suppression during ART and delayed viral rebound after ART cessation. Mechanistically different from the BET/BRD4 pan-inhibitor JQ1, which nonselectively binds to BD1 and BD2 domains of all BET proteins, ZL0580 selectively bound to BD1 domain of BRD4. We further demonstrate that ZL0580 induced HIV suppression by inhibiting Tat transactivation and transcription elongation as well as by inducing repressive chromatin structure at the HIV promoter. Our findings establish a proof of concept for modulation of BRD4 to epigenetically suppress HIV and provide a promising chemical scaffold for the development of probes and/or therapeutic agents for HIV epigenetic silencing.


Asunto(s)
Antirretrovirales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Infecciones por VIH , VIH-1/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Antirretrovirales/química , Antirretrovirales/farmacología , Azepinas/química , Azepinas/farmacología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diseño de Fármacos , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , VIH-1/genética , Humanos , Masculino , Dominios Proteicos , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triazoles/química , Triazoles/farmacología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...