Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 22(1): 167, 2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35366809

RESUMEN

BACKGROUND: Pinus tabuliformis adapts to cold climate with dry winter in northern China, serving as important commercial tree species. The TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTOR family(TCP)transcription factors were found to play a role in the circadian clock system in Arabidopsis. However, the role of TCP transcription factors in P. tabuliformis remains little understood. RESULTS: In the present study, 43 TCP genes were identified from P. tabuliformis genome database. Based on the phylogeny tree and sequence similarity, the 43 TCP genes were classified into four groups. The motif results showed that different subfamilies indeed contained different motifs. Clade II genes contain motif 1, clade I genes contain motif 1, 8, 10 and clade III and IV contain more motifs, which is consistent with our grouping results. The structural analysis of PtTCP genes showed that most PtTCPs lacked introns. The distribution of clade I and clade II on the chromosome is relatively scattered, while clade III and clade IV is relatively concentrated. Co-expression network indicated that PtTCP2, PtTCP12, PtTCP36, PtTCP37, PtTCP38, PtTCP41 and PtTCP43 were co-expressed with clock genes in annual cycle and their annual cycle expression profiles both showed obvious seasonal oscillations. PtTCP2, PtTCP12, PtTCP37, PtTCP38, PtTCP40, PtTCP41, PtTCP42 and PtTCP43 were co-expressed with clock genes in diurnal cycle. Only the expression of PtTCP42 showed diurnal oscillation. CONCLUSIONS: The TCP gene family, especially clade II, may play an important role in the regulation of the season and circadian rhythm of P. tabuliformis. In addition, the low temperature in winter may affect the diurnal oscillations.


Asunto(s)
Arabidopsis , Pinus , Arabidopsis/genética , Ritmo Circadiano/genética , Pinus/genética , Pinus/metabolismo , Estaciones del Año , Factores de Transcripción/metabolismo
2.
Plant Sci ; 316: 111167, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35151451

RESUMEN

Development after endo-dormancy release ensures perennial plants, such as forest trees, proper response to environmental changes and enhances their adaptability. In northern hemisphere, megasporophore and microsporophore of conifers undergo dormancy to complete their development. Here combined with transcriptome data, we used high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (ESI-HPLC-MS/MS) to quantitatively analyse the various hormones (Abscisic Acid (ABA), 3-Indoleacetic acid (IAA), Gibberellins (GAs), Cytokinin (CTK), Jasmonic acid (JA) and Salicylic acid (SA)) of Chinese pine (Pinus tabuliformis Carr.) male strobili after endo-dormancy release. More specifically, we analysed endogenous hormones and their related-genes and verified the important role of ABA in plants growth and development. We observed rapid decrease in ABA content after dormancy release, resulting in reducing the inhibitory effect on male strobili growth. Similarly, rapid drop in ABA/GA ratio was observed and was associated with the start of male strobili growth and development. Combined with transcriptome data, we found that HAB2-SnRK2.10 played a central role in the ABA pathway in the entire network of hormones regulating male strobili development. Due to external environment warming, the differentially expressed HAB2-SnRK gene led to ABA content rapid decline, thus initiating male strobili growth. We constructed a network of hormone-regulated development to understand the interactions between hormones after male strobili dormancy release of male strobili. This study provided essential foundations for studying megasporophore and microsporophore growth mechanism after endo-dormancy and offered new ideas for flower development in gymnosperms and angiosperms.


Asunto(s)
Pinus , Reguladores del Crecimiento de las Plantas , Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Giberelinas , Pinus/metabolismo , Cono de Planta , Latencia en las Plantas , Proteínas de Plantas/metabolismo , Espectrometría de Masas en Tándem , Transcriptoma
3.
Plant Physiol ; 187(1): 247-262, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34618133

RESUMEN

The reproductive transition is an important event that is crucial for plant survival and reproduction. Relative to the thorough understanding of the vegetative phase transition in angiosperms, a little is known about this process in perennial conifers. To gain insight into the molecular basis of the regulatory mechanism in conifers, we used temporal dynamic transcriptome analysis with samples from seven different ages of Pinus tabuliformis to identify a gene module substantially associated with aging. The results first demonstrated that the phase change in P. tabuliformis occurred as an unexpectedly rapid transition rather than a slow, gradual progression. The age-related gene module contains 33 transcription factors and was enriched in genes that belong to the MADS (MCMl, AGAMOUS, DEFICIENS, SRF)-box family, including six SOC1-like genes and DAL1 and DAL10. Expression analysis in P. tabuliformis and a late-cone-setting P. bungeana mutant showed a tight association between PtMADS11 and reproductive competence. We then confirmed that MADS11 and DAL1 coordinate the aging pathway through physical interaction. Overexpression of PtMADS11 and PtDAL1 partially rescued the flowering of 35S::miR156A and spl1,2,3,4,5,6 mutants in Arabidopsis (Arabidopsis thaliana), but only PtMADS11 could rescue the flowering of the ft-10 mutant, suggesting PtMADS11 and PtDAL1 play different roles in flowering regulatory networks in Arabidopsis. The PtMADS11 could not alter the flowering phenotype of soc1-1-2, indicating it may function differently from AtSOC1 in Arabidopsis. In this study, we identified the MADS11 gene in pine as a regulatory mediator of the juvenile-to-adult transition with functions differentiated from the angiosperm SOC1.


Asunto(s)
Proteínas de Dominio MADS/genética , Pinus/fisiología , Proteínas de Plantas/genética , Proteínas de Dominio MADS/metabolismo , Pinus/genética , Proteínas de Plantas/metabolismo , Reproducción/genética
4.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34502511

RESUMEN

Drought stress has an extensive impact on regulating various physiological, metabolic, and molecular responses. In the present study, the Pinus tabuliformis transcriptome was studied to evaluate the drought-responsive genes using RNA- Sequencing approache. The results depicted that photosynthetic rate and H2O conductance started to decline under drought but recovered 24 h after re-watering; however, the intercellular CO2 concentration (Ci) increased with the onset of drought. We identified 84 drought-responsive transcription factors, 62 protein kinases, 17 transcriptional regulators, and 10 network hub genes. Additionally, we observed the expression patterns of several important gene families, including 2192 genes positively expressed in all 48 samples, and 40 genes were commonly co-expressed in all drought and recovery stages compared with the control samples. The drought-responsive transcriptome was conserved mainly between P. tabuliformis and A. thaliana, as 70% (6163) genes had a homologous in arabidopsis, out of which 52% homologous (3178 genes corresponding to 2086 genes in Arabidopsis) were also drought response genes in arabidopsis. The collaborative network exhibited 10 core hub genes integrating with ABA-dependent and independent pathways closely conserved with the ABA signaling pathway in the transcription factors module. PtNCED3 from the ABA family genes had shown significantly different expression patterns under control, mild, prolonged drought, and recovery stages. We found the expression pattern was considerably increased with the prolonged drought condition. PtNCED3 highly expressed in all drought-tested samples; more interestingly, expression pattern was higher under mild and prolonged drought. PtNCED3 is reported as one of the important regulating enzymes in ABA synthesis. The continuous accumulation of ABA in leaves increased resistance against drought was due to accumulation of PtNCED3 under drought stress in the pine needles.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Pinus/genética , Estrés Fisiológico/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Sequías , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Hojas de la Planta/metabolismo , Análisis de Secuencia de ARN/métodos , Factores de Transcripción/metabolismo , Transcriptoma/genética
5.
BMC Genomics ; 21(1): 504, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32698817

RESUMEN

BACKGROUND: Seasonal flowering time is an ecologically and economically important trait in temperate trees. Previous studies have shown that temperature in many tree species plays a pivotal role in regulating flowering time. However, genetic control of flowering time is not synchronised in different individual trees under comparable temperature conditions, the underlying molecular mechanism is mainly to be investigated. RESULTS: In the present study, we analysed the transcript abundance in male cones and needles from six early pollen-shedding trees (EPs) and six neighbouring late pollen-shedding trees (LPs) in Pinus tabuliformis at three consecutive time points in early spring. We found that the EPs and LPs had distinct preferred transcriptional modules in their male cones and, interestingly, the expression pattern was also consistently maintained in needles even during the winter dormancy period. Additionally, the preferred pattern in EPs was also adopted by other fast-growing tissues, such as elongating new shoots. Enhancement of nucleic acid synthesis and stress resistance pathways under cold conditions can facilitate rapid growth and maintain higher transcriptional activity. CONCLUSIONS: During the cold winter and early spring seasons, the EPs were more sensitive to relatively warmer temperatures and showed higher transcriptomic activity than the LPs, indicating that EPs required less heat accumulation for pollen shedding than LPs. These results provided a transcriptomic-wide understanding of the temporal regulation of pollen shedding in pines.


Asunto(s)
Pinus , Perfilación de la Expresión Génica , Masculino , Pinus/genética , Polen/genética , Estaciones del Año , Árboles
6.
Plant Physiol ; 182(1): 658-668, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31659126

RESUMEN

Gibberellin (GA) is known to play an important role in low red/far-red (R:FR) light ratio-mediated hypocotyl and petiole elongation in Arabidopsis (Arabidopsis thaliana). However, the regulatory relationship between low R:FR and GAs remains unclear, especially in gymnosperms. To increase our understanding of the molecular basis of low R:FR-mediated shoot elongation in pines and to determine whether there is an association between low R:FR and GAs action, we explored the morphological and transcriptomic changes triggered by low R:FR, GAs, and paclobutrazol (PAC), a GAs biosynthesis inhibitor, in Pinus tabuliformis seedlings. Transcriptome profiles revealed that low R:FR conditions and GAs have a common set of transcriptional targets in P. tabuliformis We provide evidence that the effect of low R:FR on shoot elongation in P. tabuliformis is at least partially modulated by GAs accumulation, which can be largely attenuated by PAC. GAs are also involved in the cross talk between different phytohormones in the low R:FR response. A GA biosynthesis gene, encoding ent-kaurenoic acid oxidase (KAO), was strongly stimulated by low R:FR without being affected by GAs feedback regulation or the photoperiod. We show that GA signaling is required for low R:FR-induced shoot elongation in P tabuliformis seedlings, and that there are different regulatory targets for low R:FR-mediated GA biosynthesis between conifers and angiosperms.


Asunto(s)
Giberelinas/metabolismo , Luz , Pinus/metabolismo , Plantones/metabolismo , Pinus/efectos de la radiación , Plantones/efectos de la radiación , Transducción de Señal/efectos de la radiación
7.
Tree Physiol ; 39(7): 1173-1186, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31073594

RESUMEN

It has long been known that the pollen shedding time in pine trees is correlated with temperature, but the molecular basis for this has remained largely unknown. To better understand the mechanisms driving temperature response and to identify the hub regulators of pollen shedding time regulation in Pinus tabuliformis Carr., we identified a set of temperature-sensitive genes by carrying out a comparative transcriptome analysis using six early pollen shedding trees (EPs) and six late pollen shedding trees (LPs) during mid-winter and at three consecutive time points in early spring. We carried out a weighted gene co-expression network analysis and constructed a transcription factor (TF) collaborative network, merging the common but differentially expressed TFs of the EPs and LPs into a joint network. We found five hub genes in the core TF module whose expression was rapidly induced by low temperatures. The transcriptional activity of this TF module was strongly associated with pollen shedding time, and likely to produce the fine balance between cold hardiness and growth activity in early spring. We confirmed the key role of temperature in regulating flowering time and identified a transcription factor module associated with pollen shedding time in P. tabuliformis. This suggests that repression of growth activity by repressors is the main mechanism balancing growth and cold hardiness in pine trees in early spring. Our results provide new insights into the molecular mechanisms regulating seasonal flowering time in pines.


Asunto(s)
Pinus , Factores de Transcripción , Polen , Temperatura , Transcriptoma
8.
BMC Genomics ; 16: 693, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26369937

RESUMEN

BACKGROUND: Small RNA (sRNA) play pivotal roles in reproductive development, and their biogenesis and action mechanisms are well characterised in angiosperm plants; however, corresponding studies in conifers are very limited. To improve our understanding of the roles of sRNA pathways in the reproductive development of conifers, the genes associated with sRNA biogenesis and action pathways were identified and analysed, and sRNA sequencing and parallel analysis of RNA ends (PARE) were performed in male and female cones of the Chinese pine (Pinus tabuliformis). RESULTS: Based on high-quality reference transcriptomic sequences, 21 high-confidence homologues involved in sRNA biogenesis and action in P. tabuliformis were identified, including two different DCL3 genes and one AGO4 gene. More than 75 % of genes involved in sRNA biogenesis and action have higher expression levels in female than in male cones. Twenty-six microRNA (miRNA) families and 74 targets, including 46 24-nt sRNAs with a 5' A, which are specifically expressed in male cones or female cones and probably bind to AGO4, were identified. CONCLUSIONS: The sRNA pathways have higher activity in female than in male cones, and the miRNA pathways are the main sRNA pathways in P. tabuliformis. The low level of 24-nt short-interfering RNAs in conifers is not caused by the absence of biogenesis-related genes or AGO-binding proteins, but most likely caused by the low accumulation of these key components. The identification of sRNAs and their targets, as well as genes associated with sRNA biogenesis and action, will provide a good starting point for investigations into the roles of sRNA pathways in cone development in conifers.


Asunto(s)
Pinus/genética , ARN de Planta/genética , ARN Pequeño no Traducido/genética , Transcriptoma , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Orden Génico , Genes de Plantas , Filogenia , Pinus/clasificación , Pinus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Interferencia de ARN , ARN Mensajero/genética , Reproducción/genética
9.
BMC Genomics ; 14: 263, 2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-23597112

RESUMEN

BACKGROUND: The Chinese pine (Pinus tabuliformis) is an indigenous conifer species in northern China but is relatively underdeveloped as a genomic resource; thus, limiting gene discovery and breeding. Large-scale transcriptome data were obtained using a next-generation sequencing platform to compensate for the lack of P. tabuliformis genomic information. RESULTS: The increasing amount of transcriptome data on Pinus provides an excellent resource for multi-gene phylogenetic analysis and studies on how conserved genes and functions are maintained in the face of species divergence. The first P. tabuliformis transcriptome from a normalised cDNA library of multiple tissues and individuals was sequenced in a full 454 GS-FLX run, producing 911,302 sequencing reads. The high quality overlapping expressed sequence tags (ESTs) were assembled into 46,584 putative transcripts, and more than 700 SSRs and 92,000 SNPs/InDels were characterised. Comparative analysis of the transcriptome of six conifer species yielded 191 orthologues, from which we inferred a phylogenetic tree, evolutionary patterns and calculated rates of gene diversion. We also identified 938 fast evolving sequences that may be useful for identifying genes that perhaps evolved in response to positive selection and might be responsible for speciation in the Pinus lineage. CONCLUSIONS: A large collection of high-quality ESTs was obtained, de novo assembled and characterised, which represents a dramatic expansion of the current transcript catalogues of P. tabuliformis and which will gradually be applied in breeding programs of P. tabuliformis. Furthermore, these data will facilitate future studies of the comparative genomics of P. tabuliformis and other related species.


Asunto(s)
Evolución Biológica , Genoma de Planta , Filogenia , Pinus/genética , Transcriptoma , ADN Complementario/genética , Etiquetas de Secuencia Expresada , Mutación INDEL , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA