Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gene ; 910: 148336, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38447680

RESUMEN

DNA binding with one finger (Dof), plant-specific zinc finger transcription factors, can participate in various physiological and biochemical processes during the life of plants. As one of the most important oil crops in the world, sunflower (Helianthus annuus L.) has significant economic and ornamental value. However, a systematic analysis of H. annuus Dof (HaDof) members and their functions has not been extensively conducted. In this study, we identified 50 HaDof genes that are unevenly distributed on 17 chromosomes of sunflower. We present a comprehensive overview of the HaDof genes, including their chromosome locations, phylogenetic analysis, and expression profile characterization. Phylogenetic analysis classified the 366 Dof members identified from 11 species into four groups (further subdivided into nine subfamilies). Segmental duplications are predominantly contributed to the expansion of sunflower Dof genes, and all segmental duplicate gene pairs are under purifying selection due to strong evolutionary constraints. Furthermore, we observed differential expression patterns for HaDof genes in normal tissues as well as under hormone treatment or abiotic stress conditions by analyzing RNA-seq data from previous studies and RT-qPCR data in our current study. The expression of HaDof04 and HaDof43 were not detected in any samples, which implied that they may be gradually undergoing pseudogenization process. Some HaDof genes, such as HaDof25 and HaDof30, showed responsiveness to exogenous plant hormones, such as kinetin, brassinosteroid, auxin or strigolactone, while others like HaDof15 and HaDof35 may participate in abiotic stress resistance of sunflower seedling. Our study represents the initial step towards understanding the phylogeny and expression characterization of sunflower Dof family genes, which may provide valuable reference information for functional studies on hormone response, abiotic stress resistance, and molecular breeding in sunflower and other species.


Asunto(s)
Helianthus , Helianthus/genética , Helianthus/metabolismo , Filogenia , Familia de Multigenes , Estrés Fisiológico/genética , Genoma de Planta , Hormonas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
iScience ; 26(11): 108112, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37860690

RESUMEN

Drought can adversely influence the crop growth and production. Accordingly, sunflowers have strong adaptability to drought; hence, we conducted analyses for sunflower seedlings with drought stress and rehydration drought acclimation through physiological measurements and transcriptomics. It showed that drought can cause the accumulation of ROS and enhance the activity of antioxidant enzymes and the content of osmolytes. After rehydration, the contents of ROS and MDA were significantly reduced concomitant with increased antioxidant activity and osmotic adjustment. Totally, 2,589 DEGs were identified among treatments. Functional enrichment analysis showed that DEGs were mainly involved in plant hormone signal transduction, MAPK signaling, and biosynthesis of secondary metabolites. Comparison between differentially spliced genes and DEGs indicated that bHLH025, NAC53, and SINAT3 may be pivotal genes involved in sunflower drought resistance. Our results not only highlight the underlying mechanism of drought stress and rehydration in sunflower but also provide a theoretical basis for crop genetic breeding.

3.
Front Plant Sci ; 13: 1010404, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275559

RESUMEN

Jasmonate ZIM-domain (JAZ) proteins act as inhibitory factors of the jasmonic acid (JA) pathway, which is involved in regulating plant development and defense responses. However, there are no extensive studies available on JAZ genes in sunflower (Helianthus annuus L.). In this study, the phylogenetic analysis of 139 putative JAZ genes from eight plants demonstrated that these JAZs could be divided into five groups (Groups I-V), and the 27 sunflower JAZs (HaJAZs) were classified into these five groups. All groups contained genes from both monocotyledons and dicotyledons, indicating that the emergence of JAZ genes predates the differentiation of monocotyledons and dicotyledons. Both segmental and tandem duplications contributed greatly to this gene family's expansion in sunflower, especially in Group II. Moreover, the expression profiles of HaJAZ genes under normal conditions, hormone treatments or abiotic stresses were analyzed based on RNA-seq data. HaJAZ2 may be undergoing pseudogenization as a nonfunctional gene because it was not expressed in any tissue. Many HaJAZ genes in roots upregulated their expression when involved in responding to exogenous hormones, especially methyl-jasmonate. The abiotic stress treatments of sunflower showed that HaJAZ5, HaJAZ15, HaJAZ17, HaJAZ20, and HaJAZ21 tend to be sensitive to certain abiotic stresses. HaJAZs from different groups may share similar functions but also exercise their unique functions when responding to abiotic stresses. We speculated that this gene family was conserved in sequence but varied in its expression among duplicated HaJAZ genes, which implies that they may confer neofunctionalization in the adaptation to abiotic stresses; this work provides insight into the resistance of sunflowers and their adaptation to diverse environmental conditions.

4.
J Sci Food Agric ; 100(13): 4901-4910, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32478436

RESUMEN

BACKGROUND: Inappropriate disposal of herb residues in China has caused major problems for the immediate environment and to human safety. Here, three herb residues, compound Kushen injection (CKI), Qizhi Tongluo capsule (QTC), and Shenbai Shuxin capsule (SSC), were applied as substrates to corncob at various ratios (30:60, 45:45, and 60:30) for the propagation of the mushroom Pleurotus ostreatus. The effects of supplementation using herb residues on yield, biodegradation ability, bioactive compounds, antioxidant properties, and safety of P. ostreatus were assessed. RESULTS: Different spawn running times were observed using growth medium, whereas 45CKI, 60QTC, and 30SSC media were determined as optimal-performing substrate combinations, resulting in yields of 843 g kg-1 , 828 g kg-1 , and 715 g kg-1 respectively. Biodegradation analysis of consumed substrates revealed a significant decrease in cellulose and hemicellulose levels compared with lignin. Furthermore, chemical analysis of fruiting bodies revealed that the 45CKI and 60QTC substrates resulted in higher total phenol, flavonoid, terpenoid, and vitamin C levels, but significantly reduced water-soluble polysaccharides compared with the corncob medium. The methanol extract of fruiting bodies grown on substrates containing herb residues exhibited higher antioxidant properties than the control, as it was more effective in scavenging 2,2-diphenyl-1-picrylhydrazyl radicals, had greater reducing power, and more strongly inhibiting lipid peroxidation. Furthermore, high-performance liquid chromatography studies indicated that fruiting bodies did not generate matrine (a specific toxin produced in Kushen) when cultivated using the CKI substrate. CONCLUSIONS: P. ostreatus cultivation on substrates mixed with herb residues facilitates herb residue management as well as bioactivity-rich and non-toxic fruit body formation. © 2020 Society of Chemical Industry.


Asunto(s)
Medios de Cultivo/metabolismo , Cuerpos Fructíferos de los Hongos/química , Pleurotus/crecimiento & desarrollo , Antioxidantes/química , Antioxidantes/metabolismo , Biodegradación Ambiental , Celulosa/metabolismo , Medios de Cultivo/química , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/metabolismo , Fenoles/química , Fenoles/metabolismo , Plantas Medicinales/química , Plantas Medicinales/metabolismo , Plantas Medicinales/microbiología , Pleurotus/química , Pleurotus/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Eliminación de Residuos , Residuos/análisis
5.
J Pharm Biomed Anal ; 76: 44-8, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-23291442

RESUMEN

A reversed phase high performance liquid chromatography method coupled with a diode array detector (HPLC-DAD) was developed for the first time for the simultaneous determination of 9 flavonoids in Senecio cannabifolius, a traditional Chinese medicinal herb. Agilent Zorbax SB-C18 column was used at room temperature and the mobile phase was a mixture of acetonitrile and 0.5% formic acid (v/v) in water in the gradient elution mode at a flow-rate of 1.0mlmin(-1), detected at 360nm. Validation of this method was performed to verify the linearity, precision, limits of detection and quantification, intra- and inter-day variabilities, reproducibility and recovery. The calibration curves showed good linearities (R(2)>0.9995) within the test ranges. The relative standard deviation (RSD) of the method was less than 3.0% for intra- and inter-day assays. The samples were stable for at least 96h, and the average recoveries were between 90.6% and 102.5%. High sensitivity was demonstrated with detection limits of 0.028-0.085µg/ml for flavonoids. The newly established HPLC method represents a powerful technique for the quality assurance of S. cannabifolius.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Senecio/química , Calibración , Medicamentos Herbarios Chinos/análisis , Flavonoides/aislamiento & purificación , Límite de Detección , Control de Calidad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...