Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(1): eabq5506, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36608134

RESUMEN

Abnormal temperature caused by global climate change threatens the rice production. Defense signaling network for chilling has been uncovered in plants. However, less is known about repairing DNA damage produced from overwhelmed defense and its evolution during domestication. Here, we genetically identified a major QTL, COLD11, using the data-merging genome-wide association study based on an algorithm combining polarized data from two subspecies, indica and japonica, into one system. Rice loss-of-function mutations of COLD11 caused reduced chilling tolerance. Genome evolution analysis of representative rice germplasms suggested that numbers of GCG sequence repeats in the first exon of COLD11 were subjected to strong domestication selection during the northern expansion of rice planting. The repeat numbers affected the biochemical activity of DNA repair protein COLD11/RAD51A1 in renovating DNA damage under chilling stress. Our findings highlight a potential way to finely manipulate key genes in rice genome and effectively improve chilling tolerance through molecular designing.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Estudio de Asociación del Genoma Completo , Codón/metabolismo , Frío
2.
Ecol Evol ; 11(18): 12639-12650, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34594527

RESUMEN

Seed predators have the potential to act as agents of natural selection that influence seed traits and seed fates, which in turn affect the whole plant population dynamic. Accordingly, plants deploy a variety of mechanisms (e.g., resistance and tolerance strategies) to lessen the impact of predation on seed crop or on an individual seed. In this study, we described a novel mechanism, seed cloning strategy, in a tropical plant species in countering animal predation. By conducting field- and laboratory-based germination experiments, we found that both rodent damaged and artificially damaged seed fragments of a large-seeded tree Garcinia xanthochymus (Clusiaceae) could successfully germinate and establish as seedlings. Tissue culture experiments revealed that G. xanthochymus has no endosperm in seeds, and its seed fragments own strong capacity of differentiation and cloning. Seed damage negatively affected seedling growth and germination, but the seed germination rate was remarkably high. Our study suggests that, seed cloning capacity, adopted by the large-seeded tree G. xanthochymus may act as a novel strategy counteract for seed predation and would play a significant role in stabilizing the mutualism between plant and animals.

3.
Mol Plant ; 14(9): 1525-1538, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34052392

RESUMEN

Vernalization is a physiological process in which prolonged cold exposure establishes flowering competence in winter plants. In hexaploid wheat, TaVRN1 is a cold-induced key regulator that accelerates floral transition. However, the molecular mechanism underlying the gradual activation of TaVRN1 during the vernalization process remains unknown. In this study, we identified the novel transcript VAS (TaVRN1 alternative splicing) as a non-coding RNA derived from the sense strand of the TaVRN1 gene only in winter wheat, which regulates TaVRN1 transcription for flowering. VAS was induced during the early period of vernalization, and its overexpression promoted TaVRN1 expression to accelerate flowering in winter wheat. VAS physically associates with TaRF2b and facilitates docking of the TaRF2b-TaRF2a complex at the TaVRN1 promoter during the middle period of vernalization. TaRF2b recognizes the Sp1 motif within the TaVRN1 proximal promoter region, which is gradually exposed along with the disruption of a loop structure at the TaVRN1 locus during vernalization, to activate the transcription of TaVRN1. The tarf2b mutants exhibited delayed flowering, whereas transgenic wheat lines overexpressing TaRF2b showed earlier flowering. Taken together, our data reveal a distinct regulatory mechanism by which a long non-coding RNA facilitates the transcription factor targeting to regulate wheat flowering, providing novel insights into the vernalization process and a potential target for wheat genetic improvement.


Asunto(s)
Frío , Regulación de la Expresión Génica de las Plantas , ARN Largo no Codificante/genética , Triticum/genética , Triticum/metabolismo , Flores/genética , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estaciones del Año , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
J Plant Physiol ; 260: 153406, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33756268

RESUMEN

Low temperature is one of the abiotic stressors that affect growth and productivity of rice. The plant hormone gibberellin not only regulates growth and development but is also involved in stress defense. Our rice seedling experiments demonstrated that overexpression of SLR1, a gene that encodes the rice DELLA protein, enhanced chilling tolerance. In contrast, overexpression of the active GA synthesis gene OsGA20ox1 reduced chilling tolerance, indicating that weakening GA signaling promoted plant defense against cold stress. CoIP-MS and BiFC assays showed that SLR1 physically interacted with OsGRF6. After cold treatment and recovery, the survival rates of OsGRF6-overexpression lines and an osgrf6 mutant and its complementary lines indicated that OsGRF6 is a negative regulator of chilling tolerance in rice. The yeast one-hybrid, qRT-PCR, and transactivation assays showed that both SLR1 and OsGRF6 can bind to the promoter of the active GA catabolic gene OsGA2ox1, where SLR1 promoted and OsGRF6 suppressed OsGA2ox1 expression. At normal temperature, OsGRF6 was responsible for maintaining active GA levels by inhibiting OsGA2ox1. When rice seedlings were subjected to chilling stress, the repressive effect of OsGRF6 on OsGA2ox1 was released by cold-induced SLR1, which activated OsGA2ox1 expression to decrease the active GA levels, enhancing chilling tolerance. These results suggest that OsGRF6 is an important regulator in the balance between growth and chilling tolerance in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/genética , Proteínas de Plantas/genética , Frío , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo
5.
New Phytol ; 225(6): 2453-2467, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31736073

RESUMEN

Coordinating stress defense and plant growth is a survival strategy for adaptation to different environments that contains a series of processes, such as, cell growth, division and differentiation. However, little is known about the coordination mechanism for protein conformation change. A cyclophilin OsCYP20-2 with a variant interacts with SLENDER RICE1 (SLR1) and OsFSD2 in the nucleus and chloroplasts, respectively, to integrate chilling tolerance and cell elongation in rice (Oryza sativa) (FSD2, Fe-superoxide dismutase 2). Mass spectrum assay showed that OsNuCYP20-2 localized at the nucleus (nuclear located OsCYP20-2) was a new variant of OsCYP20-2 that truncated 71 amino-acid residues in N-terminal. The loss-of function OsCYP20-2 mutant showed sensitivity to chilling stress with accumulation of extra reactive oxygen species (ROS). In chloroplasts, the full-length OsCYP20-2 promotes OsFSD2 forming homodimers which enhance its activity, eliminating the accumulation of ROS under chilling stress. However, the mutant had shorter epidermal cells in comparison with wild-type Hwayoung (HY). In the nucleus, OsCYP20-2 caused conformation change of SLR1 to promote its degradation for cell elongation. Our data reveal a cyclophilin with a variant with dual-localization in chloroplasts and the nucleus, which mediate chilling tolerance and cell elongation.


Asunto(s)
Adaptación Fisiológica , Frío , Ciclofilinas , Oryza , Proteínas de Plantas , Cloroplastos , Ciclofilinas/genética , Oryza/genética , Proteínas de Plantas/genética
6.
Cell ; 160(6): 1209-21, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25728666

RESUMEN

Rice is sensitive to cold and can be grown only in certain climate zones. Human selection of japonica rice has extended its growth zone to regions with lower temperature, while the molecular basis of this adaptation remains unknown. Here, we identify the quantitative trait locus COLD1 that confers chilling tolerance in japonica rice. Overexpression of COLD1(jap) significantly enhances chilling tolerance, whereas rice lines with deficiency or downregulation of COLD1(jap) are sensitive to cold. COLD1 encodes a regulator of G-protein signaling that localizes on plasma membrane and endoplasmic reticulum (ER). It interacts with the G-protein α subunit to activate the Ca(2+) channel for sensing low temperature and to accelerate G-protein GTPase activity. We further identify that a SNP in COLD1, SNP2, originated from Chinese Oryza rufipogon, is responsible for the ability of COLD(jap/ind) to confer chilling tolerance, supporting the importance of COLD1 in plant adaptation.


Asunto(s)
Proteínas y Péptidos de Choque por Frío/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Cruzamiento , Proteínas y Péptidos de Choque por Frío/genética , Frío , Retículo Endoplásmico , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutación , Oryza/citología , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Alineación de Secuencia
7.
Nat Commun ; 5: 4572, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25091017

RESUMEN

Vernalization, sensing of prolonged cold, is important for seasonal flowering in eudicots and monocots. While vernalization silences a repressor (FLC, MADS-box transcription factor) in eudicots, it induces an activator (TaVRN1, an AP1 clade MADS-box transcription factor) in monocots. The mechanism for TaVRN1 induction during vernalization is not well understood. Here we reveal a novel mechanism for controlling TaVRN1 mRNA accumulation in response to prolonged cold sensing in wheat. The carbohydrate-binding protein VER2, a jacalin lectin, promotes TaVRN1 upregulation by physically interacting with the RNA-binding protein TaGRP2. TaGRP2 binds to TaVRN1 pre-mRNA and inhibits TaVRN1 mRNA accumulation. The physical interaction between VER2 and TaGRP2 is controlled by TaGRP2 O-GlcNAc modification, which gradually increases during vernalization. The interaction between VER2 and O-GlcNAc-TaGRP2 reduces TaGRP2 protein accumulation in the nucleus and/or promotes TaGRP2 dissociation from TaVRN1, leading to TaVRN1 mRNA accumulation. Our data reveal a new mechanism for sensing prolonged cold in temperate cereals.


Asunto(s)
Acetilglucosamina/metabolismo , Lectinas/fisiología , Proteínas de Plantas/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Triticum/metabolismo , Animales , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Inmunoprecipitación , Ratones , Modelos Genéticos , Mutagénesis Sitio-Dirigida , Fenotipo , Hojas de la Planta/fisiología , Proteínas de Plantas/fisiología , Estaciones del Año , Factores de Transcripción/metabolismo , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...