Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioact Mater ; 27: 200-215, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37096194

RESUMEN

The regeneration of hierarchical osteochondral units is challenging due to difficulties in inducing spatial, directional and controllable differentiation of mesenchymal stem cells (MSCs) into cartilage and bone compartments. Emerging organoid technology offers new opportunities for osteochondral regeneration. In this study, we developed gelatin-based microcryogels customized using hyaluronic acid (HA) and hydroxyapatite (HYP), respectively for inducing cartilage and bone regeneration (denoted as CH-Microcryogels and OS-Microcryogels) through in vivo self-assembly into osteochondral organoids. The customized microcryogels showed good cytocompatibility and induced chondrogenic and osteogenic differentiation of MSCs, while also demonstrating the ability to self-assemble into osteochondral organoids with no delamination in the biphasic cartilage-bone structure. Analysis by mRNA-seq showed that CH-Microcryogels promoted chondrogenic differentiation and inhibited inflammation, while OS-Microcryogels facilitated osteogenic differentiation and suppressed the immune response, by regulating specific signaling pathways. Finally, the in vivo engraftment of pre-differentiated customized microcryogels into canine osteochondral defects resulted in the spontaneous assembly of an osteochondral unit, inducing simultaneous regeneration of both articular cartilage and subchondral bone. In conclusion, this novel approach for generating self-assembling osteochondral organoids utilizing tailor-made microcryogels presents a highly promising avenue for advancing the field of tissue engineering.

2.
Nat Biomed Eng ; 7(11): 1437-1454, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37037967

RESUMEN

The extracellular matrix of cirrhotic liver tissue is highly crosslinked. Here we show that advanced glycation end-products (AGEs) mediate crosslinking in liver extracellular matrix and that high levels of crosslinking are a hallmark of cirrhosis. We used liquid chromatography-tandem mass spectrometry to quantify the degree of crosslinking of the matrix of decellularized cirrhotic liver samples from patients and from two mouse models of liver fibrosis and show that the structure, biomechanics and degree of AGE-mediated crosslinking of the matrices can be recapitulated in collagen matrix crosslinked by AGEs in vitro. Analyses via cryo-electron microscopy and optical tweezers revealed that crosslinked collagen fibrils form thick bundles with reduced stress relaxation rates; moreover, they resist remodelling by macrophages, leading to reductions in their levels of adhesion-associated proteins, altering HDAC3 expression and the organization of their cytoskeleton, and promoting a type II immune response of macrophages. We also show that rosmarinic acid inhibited AGE-mediated crosslinking and alleviated the progression of fibrosis in mice. Our findings support the development of therapeutics targeting crosslinked extracellular matrix in scarred liver tissue.


Asunto(s)
Matriz Extracelular , Reacción de Maillard , Humanos , Ratones , Animales , Microscopía por Crioelectrón , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Fibrosis , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Productos Finales de Glicación Avanzada/análisis , Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/farmacología
3.
Adv Sci (Weinh) ; 10(4): e2203315, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36494102

RESUMEN

Deposition of extracellular matrix (ECM) in the liver is an important feature of liver cirrhosis. Recovery from liver cirrhosis is physiologically challenging, partially due to the ECM in scar tissue showing resistance to cell-mediated degradation by secreted matrix metalloproteinases (MMPs). Here, a cell-mediated ECM-degradation screening system (CEDSS) in vitro is constructed for high-throughput searching for cells with tremendous degradation ability. ECM-degrading liver sinusoidal endothelial cells (dLSECs) are screened using CEDSS, which exhibit 17 times the ability to degrade collagen when compared to other cells. The degradation ability of dLSECs is mediated by the upregulation of MMP9. In particular, mRNA expression of MMP9 shows an 833-fold increase in dLSECs compared to normal endothelial cells (nLSECs), and MMP9 is regulated by transcription factor c-Fos. In vivo, single intrasplenic injection of dLSECs alleviates advanced liver fibrosis in mice, while intraperitoneal administration of liver-targeting peptide-modified dLSECs shows enhanced fibrosis-targeting effects. Degradative human umbilical vein endothelial cells (dHUVECs) prove their enhanced potential of clinical translation. Together, these results highlight the potential of ECM-degrading endothelial cells in alleviating advanced liver fibrosis, thus providing remarkable insights in the development of ECM-targeting therapeutics.


Asunto(s)
Cicatriz , Metaloproteinasa 9 de la Matriz , Ratones , Humanos , Animales , Metaloproteinasa 9 de la Matriz/metabolismo , Células Endoteliales/metabolismo , Cirrosis Hepática/terapia
4.
Trends Cell Biol ; 32(1): 70-90, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34810063

RESUMEN

Mechanical hallmarks of fibrotic microenvironments are both outcomes and causes of fibrosis progression. Understanding how cells sense and transmit mechanical cues in the interplay with extracellular matrix (ECM) and hemodynamic forces is a significant challenge. Recent advances highlight the evolvement of intracellular mechanotransduction pathways responding to ECM remodeling and abnormal hemodynamics (i.e., low and disturbed shear stress, pathological stretch, and increased pressure), which are prevalent biomechanical characteristics of fibrosis in multiple organs (e.g., liver, lung, and heart). Here, we envisage the mechanical communication in cell-ECM, cell-hemodynamics and cell-ECM-cell crosstalk (namely paratensile signaling) during fibrosis expansion. We also provide a comprehensive overview of in vitro and in silico engineering systems for disease modeling that will aid the identification and prediction of mechano-based therapeutic targets to ameliorate fibrosis progression.


Asunto(s)
Matriz Extracelular , Mecanotransducción Celular , Comunicación , Matriz Extracelular/metabolismo , Fibrosis , Humanos , Estrés Mecánico
5.
iScience ; 24(11): 103303, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34765922

RESUMEN

It is still a challenge for synthesizing 'cellular niche-mimics' in vitro with satisfactory reproducibility and fidelity to recreate the natural niche components (e.g., extracellular matrices and soluble factors) for stem cell cultivation. Inspired by the massive amplification of hepatic progenitor cells during liver fibrosis in vivo, here we optimized the in vitro liver fibrotic niches and subsequently harvested their bioactive ingredients as niche extracts (NEs). The fibrosis-relevant NE marginally outperformed Matrigel for phenotype maintenance of human embryonic stem cell (hESC)-derived hepatoblasts (HBs) and recapitulation of the pathological angiogenesis of hESC-derived endothelial cells both in 2D culture and 3D liver organoids. Finally, defined NE components (i.e., collagen III, IV, IL-17, IL-18 and M-CSF) were resolved by the quantitative proteomics which exhibited advantage over Matrigel for multi-passaged HB expansion. The pathology-relevant and tissue-specific NEs provide innovative and generalizable strategies for the discovery of optimal cellular niche and bioactive niche compositions.

6.
Cardiol Res Pract ; 2020: 7041284, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32185077

RESUMEN

Among the interventional stenting methods for treating coronary bifurcation lesions, the conventional treatments still have disadvantages, which include increased intervention difficulties or inadequate supply of blood flow to side branches and may alter the physiological function of downstream organs. Thus, the optimized design of stent geometry needs to be improved based on the specific shape of branches to minimize the complications of inadequate blood flow to the downstream organs and tissues. Our research used 3D modeling and fluid dynamics simulation to design and evaluate a new stent with locally enlarged segment by altering the proportion and length of enlarged surface area based on Bernoulli's equation. The aim is to increase the pressure and blood flow supply at side branches. According to series of blood flow simulations, the stent with 10% enlargement of surface area and length of 3 folders of stent diameter was assigned as the optimized design. The results revealed that by using this design, according to the simulation results, the average pressure on side branches increased at the rate of 43.6%, which would contribute to the adequate blood supply to the downstream organs. Besides, the average wall shear stress (WSS) at sidewalls increased at 9.2% while the average WSS on the host artery wall decreased at 14.1%. There is in the absent of noticeable rise in the total area of low WSS that blows the threshold of 0.5 Pa. Therefore, the present study provides a new method to optimize the hemodynamics features of stent for bifurcation arteries.

7.
ACS Appl Mater Interfaces ; 11(46): 43278-43286, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31663327

RESUMEN

Complex nanostructures with distinct spatial architectures and more active sites hold broad prospects in new energy conversion fields. Herein, a facile strategy was carried out to construct triple-shelled Co-VSex nanocages, starting with an ion-exchange process between Co-based zeolitic imidazolate framework-67 (ZIF-67) nanopolyhedrons and VO3- followed by the formation of triple-shelled Co-VSex hollow nanocages during the process of increasing the solvothermal temperature under the assistance of SeO32-. Meanwhile, triple-shelled Co-VSx and yolk-double shell Co-VOx nanocages were fabricated as references by a similar process. Benefiting from the larger surface areas and more electrolyte adsorption sites, the triple-shelled Co-VSex nanocages exhibited excellent electrocatalytic performances when applied as the electrochemical catalysts for dye-sensitized solar cells (DSSC) and hydrogen evolution reactions (HER). More concretely, the DSSC based on the Co-VSex counter electrode showed outstanding power conversion efficiency of 9.68% when its Pt counterpart was 8.46%. Moreover, the Co-VSex electrocatalyst exhibited prominent HER performance with a low onset overpotential of 40 mV and a small Tafel slope of 39.1 mV dec-1 in an acidic solution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...