Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Pharmacol ; 100: 104150, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37207490

RESUMEN

This study evaluated the effects of BTEX exposure on oxidative stress; it analyzed the correlation between oxidative stress and peripheral blood counts and estimated the benchmark dose (BMD) of BTEX compounds. This study recruited 247 exposed workers and 256 controls; physical examination data were collected and serum oxidative stress levels were measured. Relationships between BTEX exposure and biomarkers were analyzed using Mann-Whitney U, generalized linear model, and chi-square trend tests. Environmental Protection Agency Benchmark Dose Software was used to calculate the BMD and lower confidence limit of the BMD (BMDL) for BTEX exposure. The total antioxidant capacity (T-AOC) correlated positively with peripheral blood counts, and negatively with the cumulative exposure dose. On using T-AOC as the outcome variable, the estimated BMD and BMDL for BTEX exposure were 3.57 mg/m3 and 2.20 mg/m3, respectively. Based on T-AOC, the calculated occupational exposure limit of BTEX was 0.055 mg/m3.


Asunto(s)
Benceno , Exposición Profesional , Humanos , Benceno/toxicidad , Benceno/análisis , Benchmarking , Pueblos del Este de Asia , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Estrés Oxidativo , Antioxidantes , Derivados del Benceno
2.
Exp Cell Res ; 424(2): 113522, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796747

RESUMEN

High mobility group protein B1 (HMGB1), a highly conserved non-histone nuclear protein, is highly expressed in fibrotic diseases; however, the role of HMGB1 in pulmonary fibrosis has not been fully elucidated. In this study, an epithelial-mesenchymal transition (EMT) model was constructed using transforming growth factor-ß1 (TGF-ß1) to stimulate BEAS-2B cells in vitro, and HMGB1 was knocked down or overexpressed to observe its effects on cell proliferation, migration and EMT. Meanwhile, string system, immunoprecipitation and immunofluorescence analyses were applied to identify and examine the relationship between HMGB1 and its potential interacting protein Brahma-related gene 1 (BRG1), and to explore the mechanism of interaction between HMGB1 and BRG1 in EMT. The results indicate that exogenous increase in HMGB1 promotes cell proliferation and migration and facilitates EMT by enhancing the PI3K/Akt/mTOR signaling pathway, whereas silencing HMGB1 has the opposite effect. Mechanistically, HMGB1 exerts these functions by interacting with BRG1, which may enhance BRG1 function and activate the PI3K/Akt/mTOR signaling pathway, thereby promoting EMT. These results suggest that HMGB1 is important for EMT and is a potential therapeutic target for the treatment of pulmonary fibrosis.


Asunto(s)
Proteína HMGB1 , Fibrosis Pulmonar , Humanos , Transición Epitelial-Mesenquimal , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fibrosis Pulmonar/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
3.
Biomed Pharmacother ; 155: 113638, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36099794

RESUMEN

Silicosis is an incurable lung disease that can progress even when exposure to silica dust has ended. Lipid metabolism plays an important role in the occurrence and development of silicosis. However, the mechanistic details have not been fully elucidated. This was investigated in the current study by high-performance liquid chromatography-mass spectrometry-based lipidomic analysis of lung tissue in a mouse model of silicosis. Lipid profiles and key metabolic enzymes were compared between silica and control groups. The lipidomic analysis revealed differentially-expressed lipids in the lungs of silicosis mice compared with controls. Among the identified lipid metabolism-related enzymes, the expression of lysophosphatidylcholine acyltransferase 1 (LPCAT1) was significantly down-regulated at the transcript and protein levels. LPCAT1 overexpression in vivo using adeno-associated virus altered the balance between phosphatidylcholine and lysophosphatidylcholine and inhibited the development of silicosis in mice. These results indicate that LPCAT1 dysregulation leads to abnormal lipid metabolism and silicosis, and is a potential therapeutic target for the treatment of silica-induced pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Silicosis , Animales , Ratones , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Aciltransferasas/metabolismo , Polvo , Metabolismo de los Lípidos , Lisofosfatidilcolinas , Fosfatidilcolinas/uso terapéutico , Fibrosis Pulmonar/inducido químicamente , Dióxido de Silicio/toxicidad , Silicosis/tratamiento farmacológico
4.
Artículo en Inglés | MEDLINE | ID: mdl-35886594

RESUMEN

PURPOSE: High mobility group protein 1 (HMGB1) is a highly conserved DNA-binding nuclear protein that participates in the occurrence and development of silicosis. HMGB1 binds to its specific receptor and activates phosphatidylinositol 3-kinase (PI3K)/protein kinase B, (PKB; Akt)/mammalian target of rapamycin (mTOR) pathway. Brahma-related genes 1 (BRG1; SMARCA4) is the core subunit of SWI/SNF. HMGB1 activates the Akt pathway through BRG1 to promote the proliferation of prostate cancer. Glycyrrhizic acid is a new pharmacological inhibitor of HMGB1, which may inhibit the occurrence and development of silicosis. We speculate that glycyrrhizic acid inhibits the interaction between HMGB1 and BRG1 through the PI3K/Akt/mTOR pathway to affect the progression of silicosis. METHODS: We carried out an in vitro study and stimulated A549 with TGF-ß1 to establish an epithelial-mesenchymal transition (EMT) model, knocked down the HMGB1 and BRG1 genes in cells, observed the expression of EMT markers, and detected the interaction between HMGB1 and BRG1 by co-immunoprecipitation. In vivo, we injected glycyrrhizic acid into the mouse silicosis model to inhibit the expression of HMGB1. RESULTS: Both HMGB1 and BRG1 were highly expressed in the process of EMT. After knocking down HMGB1 and BRG1, the process of EMT was inhibited through the PI3K/Akt/mTOR pathway, and their expressions were influenced by each other. HMGB1 and BRG1 interact with each other in A549 cells. HMGB1 and BRG1 are also highly expressed in the mouse silicosis model, and glycyrrhizic acid can inhibit the expression of HMGB1/BRG1 through the PI3K/Akt/mTOR pathway. CONCLUSION: Glycyrrhizic acid can inhibit the interaction between HMGB1 and BRG1 through the PI3K/Akt/mTOR pathway to affect the progression of silicosis.


Asunto(s)
Proteína HMGB1 , Fibrosis Pulmonar , Silicosis , Animales , Proliferación Celular , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/uso terapéutico , Proteína HMGB1/genética , Masculino , Mamíferos/metabolismo , Ratones , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Silicosis/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-35742351

RESUMEN

The purpose of this study was to investigate the expression of immune checkpoint cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and T cell immunoglobulin and mucin domain 3 (TIM-3) in the peripheral blood T lymphocytes of medical radiologists. The study incorporated 100 male medical radiologists and 107 male healthy controls. The expressions of CTLA-4 and TIM-3 among CD4+ and CD8+ lymphocytes were detected by flow cytometry. The expression levels of CTLA-4 and TIM-3 in the CD4+T cells of radiation workers were lower than those of healthy controls (p < 0.05). Correlation analysis showed that the CD8+CTLA-4 expression level was significantly positively correlated with individual cumulative dose (rs = 0.260, p = 0.001, <0.05), while the expression level of CD8+TIM-3 was negatively correlated (rs = −0.180, p = 0.027, <0.05). Low-dose radiation exposure affects the expression of CTLA-4 and TIM-3 in human peripheral blood T lymphocytes. Future studies need to focus on exploring the mechanisms by which CTLA-4 and TIM-3 expression changes in response to low-dose radiation exposure.


Asunto(s)
Linfocitos T CD8-positivos , Receptor 2 Celular del Virus de la Hepatitis A , Linfocitos T CD4-Positivos/metabolismo , Antígeno CTLA-4 , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Humanos , Masculino , Radiólogos
6.
Artículo en Inglés | MEDLINE | ID: mdl-35682354

RESUMEN

BACKGROUND: Excessive accumulation of extracellular matrix is a key feature of pulmonary fibrosis (PF), and myofibroblasts are the main producers of extracellular matrix. Fibroblasts are the major source of myofibroblasts, but the mechanisms of transdifferentiation are unclear. METHODS: In vitro, transforming growth factor-ß1 was used to induce NIH-3T3 cell transdifferentiation. DMOG was used to increase hypoxia-inducible factor-1α subunit (HIF-1α) expression. KC7F2 and siRNA decreased HIF-1α expression. In vivo, silica particles were used to induce PF in C57BL/6N mice, and KC7F2 was used to reduce HIF-1α expression in C57BL/6N mice. Western blot was used to detect the expression of collagen type 1 alpha 1(COL1A1), α-smooth muscle actin (α-SMA), SMAD family member (SAMD) 3, Phospho-SMAD3 (PSMAD3), and HIF-1α. PCR was used to detect the expression of COL1A1, α-SMA, and HIF-1α. Immunohistochemistry was used to detect the expression of COL1A1 and HIF-1α. RESULTS: In vitro, compared to the control group, COL1A1, α-SMA, PSMAD3, and HIF-1α expression were elevated in the DMOG group, and COL1A1, α-SMA, PSMAD3, and HIF-1α expression were decreased in the KC7F2 group and siRNA group. Compared to the DMOG group, COL1A1, α-SMA, and PSMAD3 expression were decreased in the DMOG + SIS3 group. In vivo, compared to the saline group, COL1A1, α-SMA, PSMAD3, and HIF-1α expression were increased in the pulmonary tissue of C57BL/6N mice in the silica group. Compared to the silica group, COL1A1, α-SMA, PSMAD3, and HIF-1α expression and the degree of PF were decreased in the silica + KC7F2 group. CONCLUSION: Inhibition of HIF-1α reduced α-SMA, decreased COL1A1 expression, and attenuated the degree of PF in C57BL/6N mice. Therefore, HIF-1α may be a new target for the treatment of silica-induced PF.


Asunto(s)
Fibrosis Pulmonar , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/inducido químicamente , ARN Interferente Pequeño/genética , Dióxido de Silicio/toxicidad
7.
Neurosci Lett ; 783: 136725, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697158

RESUMEN

Oxidative stress plays essential role in the pathogenesis of Alzheimer's disease, and vitamin D3 (VD3) is a nutrient with neuroprotective and antioxidant activities. The present study aimed to confirm the neuroprotective effect and the ameliorative effect of cortical oxidative stress of VD3 in APP/PS1 transgenic mice. APP/PS1 mice were treated with VD3 for 20 weeks. After treatment, Morris Water Maze test was used to evaluate cognitive level. Western blotting was used to determine APP, p-tau, tau and PI3K/AKT/Nrf2 pathway-related protein expression levels. Immunohistochemical staining was performed to determine the levels of ß amyloid peptide (Aß) deposition. Enzyme linked immunosorbent assay was used to determine the 25(OH)D3 levels and oxidative stress status. Our results showed that treatment with VD3 ameliorated behavioral deficits of APP/PS1 mice. In addition, the administration of VD3 significantly increased the cortical 25(OH)D3 levels, while reducing the levels of cortical Aß deposition and decreasing the expression levels of cortical APP, tau and p-tau in APP/PS1 mice. Moreover, VD3 protected the cortex against oxidative stress by enhancing the levels of superoxide dismutase, glutathione and total antioxidant capacity, and downregulating the malondialdehyde levels. Furthermore, VD3 clearly activated the PI3K/AKT/Nrf2 pathway, thereby elevating the expression levels of HO1 and NQO1. We concluded that VD3 improved cognitive function and cortical Alzheimer-like pathology of APP/PS1 mice, which may be related to the inhibition of oxidative stress via activation the PI3K/AKT/Nrf2 pathway.


Asunto(s)
Enfermedad de Alzheimer , Fosfatidilinositol 3-Quinasas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Colecalciferol/farmacología , Colecalciferol/uso terapéutico , Cognición , Suplementos Dietéticos , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...