Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 25(4): 1792-1813, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38383861

RESUMEN

Signalling by the Unfolded Protein Response (UPR) or by the Death Receptors (DR) are frequently activated towards pro-tumoral outputs in cancer. Herein, we demonstrate that the UPR sensor IRE1 controls the expression of the DR CD95/Fas, and its cell death-inducing ability. Both genetic and pharmacologic blunting of IRE1 activity increased CD95 expression and exacerbated CD95L-induced cell death in glioblastoma (GB) and Triple-Negative Breast Cancer (TNBC) cell lines. In accordance, CD95 mRNA was identified as a target of Regulated IRE1-Dependent Decay of RNA (RIDD). Whilst CD95 expression is elevated in TNBC and GB human tumours exhibiting low RIDD activity, it is surprisingly lower in XBP1s-low human tumour samples. We show that IRE1 RNase inhibition limited CD95 expression and reduced CD95-mediated hepatic toxicity in mice. In addition, overexpression of XBP1s increased CD95 expression and sensitized GB and TNBC cells to CD95L-induced cell death. Overall, these results demonstrate the tight IRE1-mediated control of CD95-dependent cell death in a dual manner through both RIDD and XBP1s, and they identify a novel link between IRE1 and CD95 signalling.


Asunto(s)
Ribonucleasas , Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Ribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Ligando Fas/genética , Proteína Ligando Fas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Respuesta de Proteína Desplegada , Muerte Celular
2.
Neuro Oncol ; 26(5): 858-871, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38153426

RESUMEN

BACKGROUND: Intrinsic or environmental stresses trigger the accumulation of improperly folded proteins in the endoplasmic reticulum (ER), leading to ER stress. To cope with this, cells have evolved an adaptive mechanism named the unfolded protein response (UPR) which is hijacked by tumor cells to develop malignant features. Glioblastoma (GB), the most aggressive and lethal primary brain tumor, relies on UPR to sustain growth. We recently showed that IRE1 alpha (referred to IRE1 hereafter), 1 of the UPR transducers, promotes GB invasion, angiogenesis, and infiltration by macrophage. Hence, high tumor IRE1 activity in tumor cells predicts a worse outcome. Herein, we characterized the IRE1-dependent signaling that shapes the immune microenvironment toward monocytes/macrophages and neutrophils. METHODS: We used human and mouse cellular models in which IRE1 was genetically or pharmacologically invalidated and which were tested in vivo. Publicly available datasets from GB patients were also analyzed to confirm our findings. RESULTS: We showed that IRE1 signaling, through both the transcription factor XBP1s and the regulated IRE1-dependent decay controls the expression of the ubiquitin-conjugating E2 enzyme UBE2D3. In turn, UBE2D3 activates the NFκB pathway, resulting in chemokine production and myeloid infiltration in tumors. CONCLUSIONS: Our work identifies a novel IRE1/UBE2D3 proinflammatory axis that plays an instrumental role in GB immune regulation.


Asunto(s)
Neoplasias Encefálicas , Endorribonucleasas , Glioblastoma , Células Mieloides , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Glioblastoma/patología , Glioblastoma/metabolismo , Humanos , Ratones , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patología , Respuesta de Proteína Desplegada , Microambiente Tumoral , Células Tumorales Cultivadas , Estrés del Retículo Endoplásmico
3.
FEBS J ; 290(12): 3145-3164, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36694998

RESUMEN

CD95 is a member of the TNF receptor superfamily that is ubiquitously expressed in healthy and pathological tissues. Stimulation of CD95 by its physiological ligand CD95L induces its oligomerization leading in turn to the transduction of either apoptotic or nonapoptotic signals. CD95L can exist as both membrane-anchored and soluble forms (sCD95L), the latter resulting from the proteolytic cleavage of the former. Candidate proteases able to achieve CD95L cleavage were identified as matrix metalloproteases (MMP) due to their demonstrated ability to cleave other TNF superfamily ligands. The main goal of this study was to systematically identify the MMP family members capable of cleaving CD95L and subsequently determine the corresponding cleavage sites. By using different orthogonal biochemical approaches and combining them with molecular modelling, we confirmed data from the literature regarding CD95L cleavage by MMP-3 and MMP-7. Moreover, we found that MMP-2 and MMP-12 can cleave CD95L and characterized their resulting cleavage sites. This study provides a systematic approach to analyse the cleavage of CD95L, which until now had only been poorly described.


Asunto(s)
Metaloproteasas , Receptor fas , Proteína Ligando Fas/química , Receptor fas/fisiología , Apoptosis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA