Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(14): e2220874120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36972428

RESUMEN

Bacterial transcription initiation requires σ factors for nucleation of the transcription bubble. The canonical housekeeping σ factor, σ70, nucleates DNA melting via recognition of conserved bases of the promoter -10 motif, which are unstacked and captured in pockets of σ70. By contrast, the mechanism of transcription bubble nucleation and formation during the unrelated σN-mediated transcription initiation is poorly understood. Herein, we combine structural and biochemical approaches to establish that σN, like σ70, captures a flipped, unstacked base in a pocket formed between its N-terminal region I (RI) and extra-long helix features. Strikingly, RI inserts into the nascent bubble to stabilize the nucleated bubble prior to engagement of the obligate ATPase activator. Our data suggest a general paradigm of transcription initiation that requires σ factors to nucleate an early melted intermediate prior to productive RNA synthesis.


Asunto(s)
Escherichia coli , Iniciación de la Transcripción Genética , Escherichia coli/química , Escherichia coli/metabolismo , ARN Polimerasa Sigma 54/química , Factor sigma/química , Regiones Promotoras Genéticas , Microscopía por Crioelectrón
2.
Biomacromolecules ; 23(9): 3663-3677, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35948425

RESUMEN

Higher plants synthesize cellulose using membrane-bound, six-lobed cellulose synthase complexes, each lobe containing trimeric cellulose synthases (CESAs). Although molecular biology reports support heteromeric trimers composed of different isoforms, a homomeric trimer was reported for in vitro studies of the catalytic domain of CESA1 of Arabidopsis (AtCESA1CatD) and confirmed in cryoEM structures of full-length CESA8 and CESA7 of poplar and cotton, respectively. In both structures, a small portion of the plant-conserved region (P-CR) forms the only contacts between catalytic domains of the monomers. We report inter-subunit lysine-crosslinks that localize to the small P-CR, negative-stain EM structure, and modeling data for homotrimers of AtCESA1CatD. Molecular dynamics simulations for AtCESA1CatD trimers based on the CESA8 cryoEM structure were stable and dependent upon a small set of residue contacts. The results suggest that homomeric CESA trimers may be important for the synthesis of primary and secondary cell walls and identify key residues for future mutagenic studies.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Pared Celular , Celulosa , Glucosiltransferasas/química , Glucosiltransferasas/genética
3.
Biomacromolecules ; 23(6): 2290-2301, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35341242

RESUMEN

Cellulose, the most abundant biopolymer, is a central source for renewable energy and functionalized materials. In vitro synthesis of cellulose microfibrils (CMFs) has become possible using purified cellulose synthase (CESA) isoforms from Physcomitrium patens and hybrid aspen. The exact nature of these in vitro fibrils remains unknown. Here, we characterize in vitro-synthesized fibers made by CESAs present in membrane fractions of P. patens over-expressing CESA5 by cryo-electron tomography and dynamic nuclear polarization (DNP) solid-state NMR. DNP enabled measuring two-dimensional 13C-13C correlation spectra without isotope-labeling of the fibers. Results show structural similarity between in vitro fibrils and native CMF in plant cell walls. Intensity quantifications agree with the 18-chain structural model for plant CMF and indicate limited fibrillar bundling. The in vitro system thus reveals insights into cell wall synthesis and may contribute to novel cellulosic materials. The integrated DNP and cryo-electron tomography methods are also applicable to structural studies of other carbohydrate-based biomaterials.


Asunto(s)
Bryopsida , Celulosa , Pared Celular/química , Celulosa/química , Tomografía con Microscopio Electrónico , Glucosiltransferasas/química , Espectroscopía de Resonancia Magnética/métodos
4.
Plant Physiol ; 175(1): 146-156, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28768815

RESUMEN

Cellulose, the major component of plant cell walls, can be converted to bioethanol and is thus highly studied. In plants, cellulose is produced by cellulose synthase, a processive family-2 glycosyltransferase. In plant cell walls, individual ß-1,4-glucan chains polymerized by CesA are assembled into microfibrils that are frequently bundled into macrofibrils. An in vitro system in which cellulose is synthesized and assembled into fibrils would facilitate detailed study of this process. Here, we report the heterologous expression and partial purification of His-tagged CesA5 from Physcomitrella patens Immunoblot analysis and mass spectrometry confirmed enrichment of PpCesA5. The recombinant protein was functional when reconstituted into liposomes made from yeast total lipid extract. The functional studies included incorporation of radiolabeled Glc, linkage analysis, and imaging of cellulose microfibril formation using transmission electron microscopy. Several microfibrils were observed either inside or on the outer surface of proteoliposomes, and strikingly, several thinner fibrils formed ordered bundles that either covered the surfaces of proteoliposomes or were spawned from liposome surfaces. We also report this arrangement of fibrils made by proteoliposomes bearing CesA8 from hybrid aspen. These observations describe minimal systems of membrane-reconstituted CesAs that polymerize ß-1,4-glucan chains that coalesce to form microfibrils and higher-ordered macrofibrils. How these micro- and macrofibrils relate to those found in primary and secondary plant cell walls is uncertain, but their presence enables further study of the mechanisms that govern the formation and assembly of fibrillar cellulosic structures and cell wall composites during or after the polymerization process controlled by CesA proteins.


Asunto(s)
Bryopsida/enzimología , Celulosa/biosíntesis , Celulosa/ultraestructura , Glucosiltransferasas/metabolismo , Microfibrillas , Pichia , Proteolípidos
5.
Proc Natl Acad Sci U S A ; 113(40): 11360-11365, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27647898

RESUMEN

Plant cell walls are a composite material of polysaccharides, proteins, and other noncarbohydrate polymers. In the majority of plant tissues, the most abundant polysaccharide is cellulose, a linear polymer of glucose molecules. As the load-bearing component of the cell wall, individual cellulose chains are frequently bundled into micro and macrofibrils and are wrapped around the cell. Cellulose is synthesized by membrane-integrated and processive glycosyltransferases that polymerize UDP-activated glucose and secrete the nascent polymer through a channel formed by their own transmembrane regions. Plants express several different cellulose synthase isoforms during primary and secondary cell wall formation; however, so far, none has been functionally reconstituted in vitro for detailed biochemical analyses. Here we report the heterologous expression, purification, and functional reconstitution of Populus tremula x tremuloides CesA8 (PttCesA8), implicated in secondary cell wall formation. The recombinant enzyme polymerizes UDP-activated glucose to cellulose, as determined by enzyme degradation, permethylation glycosyl linkage analysis, electron microscopy, and mutagenesis studies. Catalytic activity is dependent on the presence of a lipid bilayer environment and divalent manganese cations. Further, electron microscopy analyses reveal that PttCesA8 produces cellulose fibers several micrometers long that occasionally are capped by globular particles, likely representing PttCesA8 complexes. Deletion of the enzyme's N-terminal RING-finger domain almost completely abolishes fiber formation but not cellulose biosynthetic activity. Our results demonstrate that reconstituted PttCesA8 is not only sufficient for cellulose biosynthesis in vitro but also suffices to bundle individual glucan chains into cellulose microfibrils.


Asunto(s)
Celulosa/biosíntesis , Glucosiltransferasas/metabolismo , Microfibrillas/metabolismo , Proteínas de Plantas/metabolismo , Populus/enzimología , Secuencia de Aminoácidos , Biocatálisis , Celulasa/metabolismo , Celulosa/ultraestructura , Citosol/metabolismo , Glucosiltransferasas/química , Glucosiltransferasas/aislamiento & purificación , Glicósidos/metabolismo , Hidrólisis , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Lípidos/química , Espectrometría de Masas , Microfibrillas/ultraestructura , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Factores de Tiempo
6.
Sci Rep ; 6: 28696, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27345599

RESUMEN

A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the ß-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individual lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In summary, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains.


Asunto(s)
Celulosa/química , Glucosiltransferasas/química , Modelos Moleculares , Proteínas de Plantas/química , Pliegue de Proteína , Celulosa/biosíntesis , Dominios Proteicos , Estructura Cuaternaria de Proteína
7.
PLoS One ; 11(5): e0155886, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27214134

RESUMEN

Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into ß-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the hypothesis that it is the extrusion mechanism and order in linearly arrayed TCs that enables production of crystalline cellulose.


Asunto(s)
Gluconacetobacter/enzimología , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Membrana Celular/metabolismo , Celulosa/biosíntesis , Cristalografía por Rayos X , Tomografía con Microscopio Electrónico , Gluconacetobacter/química , Modelos Moleculares , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Conformación Proteica
8.
Plant Physiol ; 170(1): 123-35, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26556795

RESUMEN

A cellulose synthesis complex with a "rosette" shape is responsible for synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. This work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. The conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. This study strongly supports the "hexamer of trimers" model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Celulosa/biosíntesis , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dominio Catalítico , Celulosa/metabolismo , Escherichia coli/genética , Glucosiltransferasas/genética , Microscopía Electrónica de Transmisión , Modelos Moleculares , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Dispersión del Ángulo Pequeño , Difracción de Rayos X
9.
Biochem J ; 470(2): 195-205, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26348908

RESUMEN

Plant cellulose synthases (CesAs) form a family of membrane proteins that are associated with hexagonal structures in the plasma membrane called CesA complexes (CSCs). It has been difficult to purify plant CesA proteins for biochemical and structural studies. We describe CesA activity in a membrane protein preparation isolated from protoplasts of Physcomitrella patens overexpressing haemagglutinin (HA)-tagged PpCesA5. Incubating the membrane preparation with UDP-glucose predominantly produced cellulose. Negative-stain EM revealed microfibrils. Cellulase bound to and degraded these microfibrils. Vibrational sum frequency generation (SFG) spectroscopic analysis detected the presence of crystalline cellulose in the microfibrils. Putative CesA proteins were frequently observed attached to the microfibril ends. Combined cross-linking and gradient centrifugation showed bundles of cellulose microfibrils with larger particle aggregates, possibly CSCs. These results suggest that P. patens is a useful model system for biochemical and structural characterization of plant CSCs and their components.


Asunto(s)
Bryopsida/química , Celulosa/química , Glucosiltransferasas/química , Proteínas de la Membrana/química , Microfibrillas/química , Proteínas de Plantas/química , Protoplastos/química , Lectinas de Plantas/química
10.
Protein Expr Purif ; 115: 109-17, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26008117

RESUMEN

Membrane protein overexpression is often hindered by toxic effects on the expression host, limiting achievable volumetric productivity. Moreover, protein structure and function may be impaired due to inclusion body formation and proteolytic degradation. To address these challenges, we employed the photosynthetic bacterium, Rhodobacter sphaeroides for expression of challenging membrane proteins including human aquaporin 9 (hAQP9), human tight junction protein occludin (Occ), Escherichia coli toxin peptide GhoT, cellulose synthase enzyme complex (BcsAB) of R. sphaeroides and cytochrome-cy (Cyt-cy) from Rhodobacter capsulatus. Titers of 47 mg/L for Cyt-cy, 7.5 mg/L for Occ, 1.5 mg/L for BcsAB and 0.5 mg/L for hAQP9 were achieved from affinity purification. While purification of GhoT was not successful, transformants displayed a distinct growth phenotype that correlated with GhoT expression. We also evaluated the functionality of these proteins by performing water transport studies for hAQP9, peroxidase activity for cytochrome-cy, and in vitro cellulose synthesis activity assay for BcsAB. While previous studies with Rhodobacter have utilized oxygen-limited semi-aerobic growth for membrane protein expression, substantial titer improvements are achieved as a result of a 3-fold increase in biomass yield using the anaerobic photoheterotrophic growth regime, which utilizes the strong native puc promoter. This versatile platform is shown to enable recovery of a wide variety of difficult-to-express membrane proteins in functional form.


Asunto(s)
Biotecnología/métodos , Proteínas de la Membrana/metabolismo , Proteínas Recombinantes/metabolismo , Rhodobacter sphaeroides/genética , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Rhodobacter sphaeroides/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-24316836

RESUMEN

One way that bacteria regulate the transcription of specific genes to adapt to environmental challenges is to use different σ factors that direct the RNA polymerase holoenzyme to distinct promoters. Unlike σ(70) RNA polymerase (RNAP), σ(54) RNAP is unable to initiate transcription without an activator: enhancer-binding protein (EBP). All EBPs contain one ATPase domain that belongs to the family of ATPases associated with various cellular activities (AAA+ ATPases). AAA+ ATPases use the energy of ATP hydrolysis to remodel different target macromolecules to perform distinct functions. These mechanochemical enzymes are known to form ring-shaped oligomers whose conformations strongly depend upon nucleotide status. Here, the crystallization of the AAA+ ATPase domain of an EBP from Aquifex aeolicus, NtrC1, in the presence of the non-hydrolyzable ATP analog ADP-BeFx is reported. X-ray diffraction data were collected from two crystals from two different protein fractions of the NtrC1 ATPase domain. Previously, this domain was co-crystallized with ADP and ATP, but the latter crystals were grown from the Walker B substitution variant E239A. Therefore, the new data sets are the first for a wild-type EBP ATPase domain co-crystallized with an ATP analog and they reveal a new crystal form. The resulting structure(s) will shed light on the mechanism of EBP-type transcription activators.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Bacterias/química , Proteínas de Unión al ADN/química , ARN Polimerasa Sigma 54/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/análogos & derivados , Bacterias/genética , Bacterias/metabolismo , Berilio/química , Cristalización , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fluoruros/química , Expresión Génica , Estructura Terciaria de Proteína , ARN Polimerasa Sigma 54/genética , ARN Polimerasa Sigma 54/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcripción Genética
13.
Genes Dev ; 27(22): 2500-11, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24240239

RESUMEN

It is largely unknown how the typical homomeric ring geometry of ATPases associated with various cellular activities enables them to perform mechanical work. Small-angle solution X-ray scattering, crystallography, and electron microscopy (EM) reconstructions revealed that partial ATP occupancy caused the heptameric closed ring of the bacterial enhancer-binding protein (bEBP) NtrC1 to rearrange into a hexameric split ring of striking asymmetry. The highly conserved and functionally crucial GAFTGA loops responsible for interacting with σ54-RNA polymerase formed a spiral staircase. We propose that splitting of the ensemble directs ATP hydrolysis within the oligomer, and the ring's asymmetry guides interaction between ATPase and the complex of σ54 and promoter DNA. Similarity between the structure of the transcriptional activator NtrC1 and those of distantly related helicases Rho and E1 reveals a general mechanism in homomeric ATPases whereby complex allostery within the ring geometry forms asymmetric functional states that allow these biological motors to exert directional forces on their target macromolecules.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Moleculares , Nucleótidos/metabolismo , ARN Polimerasa Sigma 54/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Hidrólisis , Klebsiella pneumoniae/genética , Unión Proteica , Estructura Terciaria de Proteína , Sinorhizobium meliloti/genética
14.
Science ; 337(6094): 591-5, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22859489

RESUMEN

Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes.


Asunto(s)
ADN Polimerasa III/química , Regulación Bacteriana de la Expresión Génica , Transcripción Genética , ADN Polimerasa III/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia/métodos , Conformación Proteica
15.
Nature ; 483(7389): 336-40, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22398450

RESUMEN

Cells are organized on length scales ranging from ångström to micrometres. However, the mechanisms by which ångström-scale molecular properties are translated to micrometre-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometre-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to the valency of the interacting species. In the case of the actin-regulatory protein called neural Wiskott-Aldrich syndrome protein (N-WASP) interacting with its established biological partners NCK and phosphorylated nephrin, the phase transition corresponds to a sharp increase in activity towards an actin nucleation factor, the Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions may be used to spatially organize and biochemically regulate information throughout biology.


Asunto(s)
Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Transición de Fase , Proteínas/química , Proteínas/metabolismo , Transducción de Señal , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Biopolímeros/química , Biopolímeros/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Células HeLa , Humanos , Ligandos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Oncogénicas/química , Proteínas Oncogénicas/metabolismo , Fosforilación , Dominios Proteicos Ricos en Prolina , Estructura Cuaternaria de Proteína , Proteína Neuronal del Síndrome de Wiskott-Aldrich/química , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Dominios Homologos src
16.
Structure ; 18(11): 1420-30, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21070941

RESUMEN

The NtrC-like AAA+ ATPases control virulence and other important bacterial activities through delivering mechanical work to σ54-RNA polymerase to activate transcription from σ54-dependent genes. We report the first crystal structure for such an ATPase, NtrC1 of Aquifex aeolicus, in which the catalytic arginine engages the γ-phosphate of ATP. Comparing the new structure with those previously known for apo and ADP-bound states supports a rigid-body displacement model that is consistent with large-scale conformational changes observed by low-resolution methods. First, the arginine finger induces rigid-body roll, extending surface loops above the plane of the ATPase ring to bind σ54. Second, ATP hydrolysis permits Pi release and retraction of the arginine with a reversed roll, remodeling σ54-RNAP. This model provides a fresh perspective on how ATPase subunits interact within the ring-ensemble to promote transcription, directing attention to structural changes on the arginine-finger side of an ATP-bound interface.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Arginina/metabolismo , Bacterias/enzimología , ARN Polimerasas Dirigidas por ADN/química , Modelos Moleculares , Simulación de Dinámica Molecular , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/química , Hidrólisis , Conformación Proteica , Factores de Transcripción/química
17.
Mol Microbiol ; 73(4): 519-33, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19486295

RESUMEN

Molecular machines belonging to the AAA+ superfamily of ATPases use NTP hydrolysis to remodel their versatile substrates. The presence of an insertion sequence defines the major phylogenetic pre-sensor I insertion (pre-SIi) AAA+ superclade. In the bacterial sigma(54)-dependent enhancer binding protein phage shock protein F (PspF) the pre-SIi loop adopts different conformations depending on the nucleotide-bound state. Single amino acid substitutions within the dynamic pre-SIi loop of PspF drastically change the ATP hydrolysis parameters, indicating a structural link to the distant hydrolysis site. We used a site-specific protein-DNA proximity assay to measure the contribution of the pre-SIi loop in sigma(54)-dependent transcription and demonstrate that the pre-SIi loop is a major structural feature mediating nucleotide state-dependent differential engagement with Esigma(54). We suggest that much, if not all, of the action of the pre-SIi loop is mediated through the L1 loop and relies on a conserved molecular switch, identified in a crystal structure of one pre-SIi variant and in accordance with the high covariance between some pre-SIi residues and distinct residues outside the pre-SIi sequence.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Mutagénesis Insercional , Transactivadores/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Sustitución de Aminoácidos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Hidrólisis , Estructura Terciaria de Proteína , ARN Polimerasa Sigma 54/metabolismo , Transactivadores/genética , Activación Transcripcional
18.
Nucleic Acids Res ; 37(15): 5138-50, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19553192

RESUMEN

Bacterial RNA polymerase (RNAP) containing the major variant sigma(54) factor forms open promoter complexes in a reaction in which specialized activator proteins hydrolyse ATP. Here we probe binding interactions between sigma(54)-RNAP (Esigma(54)) and the ATPases associated with various cellular activities (AAA+) domain of the Escherichia coli activator protein, PspF, using nucleotide-metal fluoride (BeF and AlF) analogues representing ground and transition states of ATP, which allow complexes (that are otherwise too transient with ATP) to be captured. We show that the organization and functionality of the ADP-BeF- and ADP-AlF-dependent complexes greatly overlap. Our data support an activation pathway in which the initial ATP-dependent binding of the activator to the Esigma(54) closed complex results in the re-organization of Esigma(54) with respect to the transcription start-site. However, the nucleotide-dependent binding interactions between the activator and the Esigma(54) closed complex are in themselves insufficient for forming open promoter complexes when linear double-stranded DNA is present in the initial closed complex.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Proteínas de Escherichia coli/química , ARN Polimerasa Sigma 54/química , Transactivadores/química , Compuestos de Aluminio/química , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Fluoruros/química , Modelos Moleculares , Regiones Promotoras Genéticas , Unión Proteica , ARN Polimerasa Sigma 54/metabolismo , Transactivadores/metabolismo , Transcripción Genética
19.
J Mol Biol ; 387(2): 306-19, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19356588

RESUMEN

ATP-driven remodelling of initial RNA polymerase (RNAP) promoter complexes occurs as a major post recruitment strategy used to control gene expression. Using a model-enhancer-dependent bacterial system (sigma54-RNAP, Esigma54) and a slowly hydrolysed ATP analogue (ATPgammaS), we provide evidence for a nucleotide-dependent temporal pathway leading to DNA melting involving a small set of sigma54-DNA conformational states. We demonstrate that the ATP hydrolysis-dependent remodelling of Esigma54 occurs in at least two distinct temporal steps. The first detected remodelling phase results in changes in the interactions between the promoter specificity sigma54 factor and the promoter DNA. The second detected remodelling phase causes changes in the relationship between the promoter DNA and the core RNAP catalytic beta/beta' subunits, correlating with the loading of template DNA into the catalytic cleft of RNAP. It would appear that, for Esigma54 promoters, loading of template DNA within the catalytic cleft of RNAP is dependent on fast ATP hydrolysis steps that trigger changes in the beta' jaw domain, thereby allowing acquisition of the open complex status.


Asunto(s)
Desnaturalización de Ácido Nucleico , ARN Polimerasa Sigma 54/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Secuencia de Bases , ADN Bacteriano/metabolismo , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Klebsiella pneumoniae , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformación de Ácido Nucleico , Conformación Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , ARN Polimerasa Sigma 54/genética , Transactivadores/metabolismo , Transcripción Genética
20.
FEBS J ; 276(3): 807-15, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19143839

RESUMEN

Except for apyrases, ATPases generally target only the gamma-phosphate of a nucleotide. Some non-apyrase ATPases from thermophilic microorganisms are reported to hydrolyze ADP as well as ATP, which has been described as a novel property of the ATPases from extreme thermophiles. Here, we describe an apparent ADP hydrolysis by highly purified preparations of the AAA+ ATPase NtrC1 from an extremely thermophilic bacterium, Aquifex aeolicus. This activity is actually a combination of the activities of the ATPase and contaminating adenylate kinase (AK) from Escherichia coli, which is present at 1/10,000 of the level of the ATPase. AK catalyzes conversion of two molecules of ADP into AMP and ATP, the latter being a substrate for the ATPase. We raise concern that the observed thermotolerance of E. coli AK and its copurification with thermostable proteins by commonly used methods may confound studies of enzymes that specifically catalyze hydrolysis of nucleoside diphosphates or triphosphates. For example, contamination with E. coli AK may be responsible for reported ADPase activities of the ATPase chaperonins from Pyrococcus furiosus, Pyrococcus horikoshii, Methanococcus jannaschii and Thermoplasma acidophilum; the ATP/ADP-dependent DNA ligases from Aeropyrum pernix K1 and Staphylothermus marinus; or the reported ATP-dependent activities of ADP-dependent phosphofructokinase of P. furiosus. Purification methods developed to separate NtrC1 ATPase from AK also revealed two distinct forms of the ATPase. One is tightly bound to ADP or GDP and able to bind to Q but not S ion exchange matrixes. The other is nucleotide-free and binds to both Q and S ion exchange matrixes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenilato Quinasa/metabolismo , Apirasa/metabolismo , Escherichia coli/enzimología , Expresión Génica , Temperatura , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/aislamiento & purificación , Adenilato Quinasa/genética , Adenilato Quinasa/aislamiento & purificación , Apirasa/genética , Apirasa/aislamiento & purificación , Biocatálisis , Cromatografía por Intercambio Iónico , Estabilidad de Enzimas , Escherichia coli/genética , Hidrólisis , Nucleótidos/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA