Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3997, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734684

RESUMEN

Growing urban population and the distinct strategies to accommodate them lead to diverse urban development patterns worldwide. While local evidence suggests the presence of urban signatures in rainfall anomalies, there is limited understanding of how rainfall responds to divergent urban development patterns worldwide. Here we unveil a divergence in the exposure to extreme rainfall for 1790 inland cities globally, attributable to their respective urban development patterns. Cities that experience compact development tend to witness larger increases in extreme rainfall frequency over downtown than their rural surroundings, while the anomalies in extreme rainfall frequency diminish for cities with dispersed development. Convection-permitting simulations further suggest compact urban footprints lead to more pronounced urban-rural thermal contrasts and aerodynamic disturbances. This is directly responsible for the divergent rainfall responses to urban development patterns. Our analyses offer significant insights pertaining to the priorities and potential of city-level efforts to mitigate the emerging climate-related hazards, particularly for countries experiencing rapid urbanization.

2.
Comput Urban Sci ; 3(1): 22, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274379

RESUMEN

Cities need climate information to develop resilient infrastructure and for adaptation decisions. The information desired is at the order of magnitudes finer scales relative to what is typically available from climate analysis and future projections. Urban downscaling refers to developing such climate information at the city (order of 1 - 10 km) and neighborhood (order of 0.1 - 1 km) resolutions from coarser climate products. Developing these higher resolution (finer grid spacing) data needed for assessments typically covering multiyear climatology of past data and future projections is complex and computationally expensive for traditional physics-based dynamical models. In this study, we develop and adopt a novel approach for urban downscaling by generating a general-purpose operator using deep learning. This 'DownScaleBench' tool can aid the process of downscaling to any location. The DownScaleBench has been generalized for both in situ (ground- based) and satellite or reanalysis gridded data. The algorithm employs an iterative super-resolution convolutional neural network (Iterative SRCNN) over the city. We apply this for the development of a high-resolution gridded precipitation product (300 m) from a relatively coarse (10 km) satellite-based product (JAXA GsMAP). The high-resolution gridded precipitation datasets is compared against insitu observations for past heavy rain events over Austin, Texas, and shows marked improvement relative to the coarser datasets relative to cubic interpolation as a baseline. The creation of this Downscaling Bench has implications for generating high-resolution gridded urban meteorological datasets and aiding the planning process for climate-ready cities.

3.
Comput Urban Sci ; 3(1): 20, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37192956

RESUMEN

The COVID-19 pandemic caused lifestyle changes and has led to the new electricity demand patterns in the presence of non-pharmaceutical interventions such as work-from-home policy and lockdown. Quantifying the effect on electricity demand is critical for future electricity market planning yet challenging in the context of limited smart metered buildings, which leads to limited understanding of the temporal and spatial variations in building energy use. This study uses a large scale private smart meter electricity demand data from the City of Austin, combined with publicly available environmental data, and develops an ensemble regression model for long term daily electricity demand prediction. Using 15-min resolution data from over 400,000 smart meters from 2018 to 2020 aggregated by building type and zip code, our proposed model precisely formalizes the counterfactual universe in the without COVID-19 scenario. The model is used to understand building electricity demand changes during the pandemic and to identify relationships between such changes and socioeconomic patterns. Results indicate the increase in residential usage , demonstrating the spatial redistribution of energy consumption during the work-from-home period. Our experiments demonstrate the effectiveness of our proposed framework by assessing multiple socioeconomic impacts with the comparison between the counterfactual universe and observations.

4.
PNAS Nexus ; 2(3): pgad027, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36909824

RESUMEN

Herein, we introduce a novel methodology to generate urban morphometric parameters that takes advantage of deep neural networks and inverse modeling. We take the example of Chicago, USA, where the Urban Canopy Parameters (UCPs) available from the National Urban Database and Access Portal Tool (NUDAPT) are used as input to the Weather Research and Forecasting (WRF) model. Next, the WRF simulations are carried out with Local Climate Zones (LCZs) as part of the World Urban Data Analysis and Portal Tools (WUDAPT) approach. Lastly, a third novel simulation, Digital Synthetic City (DSC), was undertaken where urban morphometry was generated using deep neural networks and inverse modeling, following which UCPs are re-calculated for the LCZs. The three experiments (NUDAPT, WUDAPT, and DSC) were compared against Mesowest observation stations. The results suggest that the introduction of LCZs improves the overall model simulation of urban air temperature. The DSC simulations yielded equal to or better results than the WUDAPT simulation. Furthermore, the change in the UCPs led to a notable difference in the simulated temperature gradients and wind speed within the urban region and the local convergence/divergence zones. These results provide the first successful implementation of the digital urban visualization dataset within an NWP system. This development now can lead the way for a more scalable and widespread ability to perform more accurate urban meteorological modeling and forecasting, especially in developing cities. Additionally, city planners will be able to generate synthetic cities and study their actual impact on the environment.

5.
Comput Urban Sci ; 2(1): 16, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734266

RESUMEN

The Local Climate Zone (LCZ) classification is already widely used in urban heat island and other climate studies. The current classification method does not incorporate crucial urban auxiliary GIS data on building height and imperviousness that could significantly improve urban-type LCZ classification utility as well as accuracy. This study utilized a hybrid GIS- and remote sensing imagery-based framework to systematically compare and evaluate different machine and deep learning methods. The Convolution Neural Network (CNN) classifier outperforms in terms of accuracy, but it requires multi-pixel input, which reduces the output's spatial resolution and creates a tradeoff between accuracy and spatial resolution. The Random Forest (RF) classifier performs best among the single-pixel classifiers. This study also shows that incorporating building height dataset improves the accuracy of the high- and mid-rise classes in the RF classifiers, whereas an imperviousness dataset improves the low-rise classes. The single-pass forward permutation test reveals that both auxiliary datasets dominate the classification accuracy in the RF classifier, while near-infrared and thermal infrared are the dominating features in the CNN classifier. These findings show that the conventional LCZ classification framework used in the World Urban Database and Access Portal Tools (WUDAPT) can be improved by adopting building height and imperviousness information. This framework can be easily applied to different cities to generate LCZ maps for urban models.

6.
J Environ Manage ; 311: 114771, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35248929

RESUMEN

Lead pollution has attracted significant attention over the years. However, research on the transfer of lead between urban atmospheric particles, soils, and plants remains rare. We measured lead concentrations and lead isotope ratios in total suspended particles (TSP), soil, and plants in an urban wetland in Beijing. The study period was September 2016-August 2017- covering all four seasons. The concentrations of lead in the atmospheric particles vary from 3.13 to 6.68 mg/m3. It is significantly higher in autumn than that in spring and summer (P < 0.05). There is also a significant difference between summer and winter (P < 0.05). The soil lead concentrations range from 57 to 114 mg/kg, with the highest concentration in spring, followed by summer, winter and autumn. The lead concentrations are 1.28-7.75 mg/kg in plants. The concentration was highest in spring and significantly higher than in summer. The bioaccumulation factor of Phragmites australis was 0.064 (<0.1), indicating that lead is not easily transferred to plants. Unlike the bioaccumulation factors, translocation factors have much higher values, indicating a higher transfer within the plants. Results also indicate an interesting seasonal pattern with almost 97% of lead in plants during spring being of atmospheric origin, whereas in autumn, soilborne sources contribute almost 94%. The isotopic compositions of lead in the urban atmosphere-soil-plant system show that lead pollution results from the mixing of geogenic and anthropogenic materials. Vehicle exhaust, crustal rocks and ore deposits are likely primary sources of lead pollution within the study domain.

7.
Nat Food ; 3(6): 437-444, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-37118037

RESUMEN

The global production of processing tomatoes is concentrated in a small number of regions where climate change could have a notable impact on the future supply. Process-based tomato models project that the production in the main producing countries (the United States, Italy and China, representing 65% of global production) will decrease 6% by 2050 compared with the baseline period of 1980-2009. The predicted reduction in processing tomato production is due to a projected increase in air temperature. Under an ensemble of projected climate scenarios, California and Italy might not be able to sustain current levels of processing tomato production due to water resource constraints. Cooler producing regions, such as China and the northern parts of California, stand to improve their competitive advantage. The projected environmental changes indicate that the main growing regions of processing tomatoes might change in the coming decades.

8.
Sci Total Environ ; 792: 148396, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34465046

RESUMEN

Droughts represent one of the most severe abiotic stress factors that could result in great crop yield loss. Numerous vegetation indices have been proposed for monitoring the vegetation condition under stress and assessing drought impacts on yield loss. However, the understanding and comparison between traditional vegetation indices (VIs) and the newly emerging satellite Sun-Induced Chlorophyll Fluorescence (SIF) for monitoring vegetation condition is still limited especially under drought stress and at multiple spatial scales. In this study, the potential of satellite observation SIF for monitoring corn response to drought was investigated based on the 2012 drought in the US Corn Belt. The standardized precipitation evapotranspiration index (SPEI) was used here to quantify drought. We found that all SPEI were above -1, except for July (-1.27), August (-1.39) and September (-1.14) in 2012, indicating the severity of this drought. We examined the relationship between satellite measurements of SIF, SIFyield, VIs (e.g., NDVI and EVI) and SPEI. Results indicated that SIFyield was sensitive to drought and SIF captured the stress more accurately both at the regional and state scales for the US Corn Belt. Quantitatively, SIFyield had a high correlation with SPEI (r = 0.987, p < 0.05) over the entire Corn Belt, and it indicated losses in response to drought approximately one month earlier than SIF/NDVI/EVI. Furthermore, our results demonstrated that SIF could be trusted as an effective indicator to study the relationship between GPP (R2 ≥ 0.8664, p < 0.01) under drought conditions across the Corn Belt. This study highlighted the advantage of using satellite SIF observations to monitor the drought stress on crop growth especially GPP at regional scale.


Asunto(s)
Clorofila , Sequías , Fluorescencia , Estaciones del Año , Zea mays
9.
Artículo en Inglés | MEDLINE | ID: mdl-33114771

RESUMEN

Prior evaluations of the relationship between COVID-19 and weather indicate an inconsistent role of meteorology (weather) in the transmission rate. While some effects due to weather may exist, we found possible misconceptions and biases in the analysis that only consider the impact of meteorological variables alone without considering the urban metabolism and environment. This study highlights that COVID-19 assessments can notably benefit by incorporating factors that account for urban dynamics and environmental exposure. We evaluated the role of weather (considering equivalent temperature that combines the effect of humidity and air temperature) with particular consideration of urban density, mobility, homestay, demographic information, and mask use within communities. Our findings highlighted the importance of considering spatial and temporal scales for interpreting the weather/climate impact on the COVID-19 spread and spatiotemporal lags between the causal processes and effects. On global to regional scales, we found contradictory relationships between weather and the transmission rate, confounded by decentralized policies, weather variability, and the onset of screening for COVID-19, highlighting an unlikely impact of weather alone. At a finer spatial scale, the mobility index (with the relative importance of 34.32%) was found to be the highest contributing factor to the COVID-19 pandemic growth, followed by homestay (26.14%), population (23.86%), and urban density (13.03%). The weather by itself was identified as a noninfluential factor (relative importance < 3%). The findings highlight that the relation between COVID-19 and meteorology needs to consider scale, urban density and mobility areas to improve predictions.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Máscaras , Pandemias , Neumonía Viral , Tiempo (Meteorología) , COVID-19 , Humanos , Características de la Residencia , SARS-CoV-2 , Temperatura , Población Urbana
10.
Sci Rep ; 9(1): 17136, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748625

RESUMEN

Extreme flooding over southern Louisiana in mid-August of 2016 resulted from an unusual tropical low that formed and intensified over land. We used numerical experiments to highlight the role of the 'Brown Ocean' effect (where saturated soils function similar to a warm ocean surface) on intensification and it's modulation by land cover change. A numerical modeling experiment that successfully captured the flood event (control) was modified to alter moisture availability by converting wetlands to open water, wet croplands, and dry croplands. Storm evolution in the control experiment with wet antecedent soils most resembles tropical lows that form and intensify over oceans. Irrespective of soil moisture conditions, conversion of wetlands to croplands reduced storm intensity, and also, non-saturated soils reduced rain by 20% and caused shorter durations of high intensity wind conditions. Developing agricultural croplands and more so restoring wetlands and not converting them into open water can impede intensification of tropical systems that affect the area.

11.
Sci Total Environ ; 693: 133536, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31374498

RESUMEN

In the first two decades of the 21st century, 79 global big cities have suffered extensively from drought disaster. Meanwhile, climate change has magnified urban drought in both frequency and severity, putting tremendous pressure on a city's water supply. Therefore, tackling the challenges of urban drought is an integral part of achieving the targets set in at least 5 different Sustainable Development Goals (SDGs). Yet, the current literatures on drought have not placed sufficient emphasis on urban drought challenge in achieving the United Nations' 2030 Agenda for Sustainable Development. This review is intended to fill this knowledge gap by identifying the key concepts behind urban drought, including the definition, occurrence, characteristics, formation, and impacts. Then, four sub-categories of urban drought are proposed, including precipitation-induced, runoff-induced, pollution-induced, and demand-induced urban droughts. These sub-categories can support city stakeholders in taking drought mitigation actions and advancing the following SDGs: SDG 6 "Clean water and sanitation", SDG 11 "Sustainable cities and communities", SDG 12 "Responsible production and consumption", SDG 13 "Climate actions", and SDG 15 "Life on land". To further support cities in taking concrete actions in reaching the listed SDGs, this perspective proposes five actions that city stakeholders can undertake in enhancing drought resilience and preparedness:1) Raising public awareness on water right and water saving; 2) Fostering flexible reliable, and integrated urban water supply; 3) Improving efficiency of urban water management; 4) Investing in sustainability science research for urban drought; and 5) Strengthening resilience efforts via international cooperation. In short, this review contains a wealth of insights on urban drought and highlights the intrinsic connections between drought resilience and the 2030 SDGs. It also proposes five action steps for policymakers and city stakeholders that would support them in taking the first step to combat and mitigate the impacts of urban droughts.

12.
Sci Rep ; 9(1): 7301, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31086196

RESUMEN

Even though it is known that urbanization affects rainfall, studies vary regarding the magnitude and location of rainfall change. To develop a comprehensive understanding of rainfall modification due to urbanization, a systematic meta-analysis is undertaken. The initial search identified over 2000 papers of which 489 were carefully analyzed. From these papers, 85 studies from 48 papers could be used in a quantitative meta-analysis assessment. Results were analyzed for case studies versus climatological assessments, observational versus modeling studies and for day versus night. Results highlight that urbanization modifies rainfall, such that mean precipitation is enhanced by 18% downwind of the city, 16% over the city, 2% on the left and 4% on the right with respect to the storm direction. The rainfall enhancement occurred approximately 20-50 km from the city center. Study results help develop a more complete picture of the role of urban processes in rainfall modification and highlight that rainfall increases not only downwind of the city but also over the city. These findings have implications for urban flooding as well as hydroclimatological studies. This meta-analysis highlights the need for standardizing how the results are presented in future studies to aid the generalization of findings.


Asunto(s)
Cambio Climático/estadística & datos numéricos , Meteorología/estadística & datos numéricos , Lluvia , Urbanización , Ciudades/estadística & datos numéricos , Seguimiento de Parámetros Ecológicos/estadística & datos numéricos , Inundaciones/prevención & control , Meteorología/métodos , Meteorología/normas , Modelos Teóricos , Estudios Observacionales como Asunto , Fotoperiodo , Proyectos de Investigación/normas
13.
Sci Rep ; 8(1): 3918, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500451

RESUMEN

While satellite data provides a strong robust signature of urban feedback on extreme precipitation; urbanization signal is often not so prominent with station level data. To investigate this, we select the case study of Mumbai, India and perform a high resolution (1 km) numerical study with Weather Research and Forecasting (WRF) model for eight extreme rainfall days during 2014-2015. The WRF model is coupled with two different urban schemes, the Single Layer Urban Canopy Model (WRF-SUCM), Multi-Layer Urban Canopy Model (WRF-MUCM). The differences between the WRF-MUCM and WRF-SUCM indicate the importance of the structure and characteristics of urban canopy on modifications in precipitation. The WRF-MUCM simulations resemble the observed distributed rainfall. WRF-MUCM also produces intensified rainfall as compared to the WRF-SUCM and WRF-NoUCM (without UCM). The intensification in rainfall is however prominent at few pockets of urban regions, that is seen in increased spatial variability. We find that the correlation of precipitation across stations within the city falls below statistical significance at a distance greater than 10 km. Urban signature on extreme precipitation will be reflected on station rainfall only when the stations are located inside the urban pockets having intensified precipitation, which needs to be considered in future analysis.

14.
Sci Rep ; 7: 44552, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28294189

RESUMEN

Understanding drought from multiple perspectives is critical due to its complex interactions with crop production, especially in India. However, most studies only provide singular view of drought and lack the integration with specific crop phenology. In this study, four time series of monthly meteorological, hydrological, soil moisture, and vegetation droughts from 1981 to 2013 were reconstructed for the first time. The wheat growth season (from October to April) was particularly analyzed. In this study, not only the most severe and widespread droughts were identified, but their spatial-temporal distributions were also analyzed alone and concurrently. The relationship and evolutionary process among these four types of droughts were also quantified. The role that the Green Revolution played in drought evolution was also studied. Additionally, the trends of drought duration, frequency, extent, and severity were obtained. Finally, the relationship between crop yield anomalies and all four kinds of drought during the wheat growing season was established. These results provide the knowledge of the most influential drought type, conjunction, spatial-temporal distributions and variations for wheat production in India. This study demonstrates a novel approach to study drought from multiple views and integrate it with crop growth, thus providing valuable guidance for local drought mitigation.


Asunto(s)
Agricultura , Sequías , Monitoreo del Ambiente , Triticum/crecimiento & desarrollo , Humanos , India , Tecnología de Sensores Remotos/tendencias , Estaciones del Año , Suelo/química
15.
Environ Sci Technol ; 50(17): 9736-45, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27482620

RESUMEN

Despite significant effort to quantify the interdependence of the water and energy sectors, global requirements of energy for water (E4W) are still poorly understood, which may result in biases in projections and consequently in water and energy management and policy. This study estimates water-related energy consumption by water source, sector, and process for 14 global regions from 1973 to 2012. Globally, E4W amounted to 10.2 EJ of primary energy consumption in 2010, accounting for 1.7%-2.7% of total global primary energy consumption, of which 58% pertains to fresh surface water, 30% to fresh groundwater, and 12% to nonfresh water, assuming median energy intensity levels. The sectoral E4W allocation includes municipal (45%), industrial (30%), and agricultural (25%), and main process-level contributions are from source/conveyance (39%), water purification (27%), water distribution (12%), and wastewater treatment (18%). While the United States was the largest E4W consumer from the 1970s until the 2000s, the largest consumers at present are the Middle East, India, and China, driven by rapid growth in desalination, groundwater-based irrigation, and industrial and municipal water use, respectively. The improved understanding of global E4W will enable enhanced consistency of both water and energy representations in integrated assessment models.


Asunto(s)
Purificación del Agua , Agua , Agua Dulce , Agua Subterránea , Abastecimiento de Agua
16.
Environ Pollut ; 210: 261-70, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26774191

RESUMEN

Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates.


Asunto(s)
Metales Pesados/análisis , Ríos/química , Contaminantes del Agua/análisis , Animales , Minería , Aguas Residuales/química
17.
PLoS One ; 10(11): e0142073, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26544045

RESUMEN

This article represents the second report by an ASCE Task Committee "Infrastructure Impacts of Landscape-driven Weather Change" under the ASCE Watershed Management Technical Committee and the ASCE Hydroclimate Technical Committee. Herein, the 'infrastructure impacts" are referred to as infrastructure-sensitive changes in weather and climate patterns (extremes and non-extremes) that are modulated, among other factors, by changes in landscape, land use and land cover change. In this first report, the article argued for explicitly considering the well-established feedbacks triggered by infrastructure systems to the land-atmosphere system via landscape change. In this report by the ASCE Task Committee (TC), we present the results of this ASCE TC's survey of a cross section of experienced water managers using a set of carefully crafted questions. These questions covered water resources management, infrastructure resiliency and recommendations for inclusion in education and curriculum. We describe here the specifics of the survey and the results obtained in the form of statistical averages on the 'perception' of these managers. Finally, we discuss what these 'perception' averages may indicate to the ASCE TC and community as a whole for stewardship of the civil engineering profession. The survey and the responses gathered are not exhaustive nor do they represent the ASCE-endorsed viewpoint. However, the survey provides a critical first step to developing the framework of a research and education plan for ASCE. Given the Water Resources Reform and Development Act passed in 2014, we must now take into account the perceived concerns of the water management community.


Asunto(s)
Conservación de los Recursos Naturales , Testimonio de Experto , Encuestas y Cuestionarios , Recursos Hídricos/provisión & distribución , Ingeniería
18.
Sci Rep ; 5: 11261, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26158774

RESUMEN

Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983-2012, we find that topsoil (0-50 cm) volumetric water content during the growing season has declined significantly (p < 0.01), with a trend of -0.011 to -0.015 m(3) m(-3) per decade. Observed discharge declines for the three large river basins are consistent with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Suelo/química , Agua/química , China , Fertilizantes , Estaciones del Año
19.
Sci Total Environ ; 408(16): 3240-50, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20478612

RESUMEN

Acidification of freshwaters is a global phenomenon, occurring both through natural leaching of organic acids and through human activities from industrial emissions and mining. The West Coast of the South Island, New Zealand, has both naturally acidic and acid mine drainage (AMD) streams enabling us to investigate the response of fish communities to a gradient of acidity in the presence and absence of additional stressors such as elevated concentrations of heavy metals. We surveyed a total of 42 streams ranging from highly acidic (pH 3.1) and high in heavy metals (10 mg L(-)(1) Fe; 38 mg L(-)(1) Al) to circum-neutral (pH 8.1) and low in metals (0.02 mg L(-)(1) Fe; 0.05 mg L(-)(1) Al). Marked differences in pH and metal tolerances were observed among the 15 species that we recorded. Five Galaxias species, Anguilla dieffenbachii and Anguillaaustralis were found in more acidic waters (pH<5), while bluegill bullies (Gobiomorphus hubbsi) and torrentfish (Cheimarrichthys fosteri) were least tolerant of low pH (minimum pH 6.2 and 5.5, respectively). Surprisingly, the strongest physicochemical predictor of fish diversity, density and biomass was dissolved metal concentrations (Fe, Al, Zn, Mn and Ni) rather than pH. No fish were detected in streams with dissolved metal concentrations >2.7 mg L(-)(1) and nine taxa were only found in streams with metal concentrations <1 mg L(-)(1). The importance of heavy metals as critical drivers of fish communities has not been previously reported in New Zealand, although the mechanism of the metal effects warrants further study. Our findings indicate that any remediation of AMD streams which seeks to enable fish recolonisation should aim to improve water quality by raising pH above approximately 4.5 and reducing concentrations of dissolved Al and Fe to <1.0 mg L(-)(1).


Asunto(s)
Ácidos/análisis , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Animales , Factores de Confusión Epidemiológicos , Agua Dulce , Concentración de Iones de Hidrógeno
20.
Appl Environ Microbiol ; 75(11): 3455-60, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19363070

RESUMEN

We examined the bacterial communities of epilithic biofilms in 17 streams which represented a gradient ranging from relatively pristine streams to streams highly impacted by acid mine drainage (AMD). A combination of automated ribosomal intergenic spacer analysis with multivariate analysis and ordination provided a sensitive, high-throughput method to monitor the impact of AMD on stream bacterial communities. Significant differences in community structure were detected among neutral to alkaline (pH 6.7 to 8.3), acidic (pH 3.9 to 5.7), and very acidic (pH 2.8 to 3.5) streams. DNA sequence analysis revealed that the acidic streams were generally dominated by bacteria related to the iron-oxidizing genus Gallionella, while the organisms in very acidic streams were less diverse and included a high proportion of acidophilic eukaryotes, including taxa related to the algal genera Navicula and Klebsormidium. Despite the presence of high concentrations of dissolved metals (e.g., Al and Zn) and deposits of iron hydroxide in some of the streams studied, pH was the most important determinant of the observed differences in bacterial community variability. These findings confirm that any restoration activities in such systems must focus on dealing with pH as the first priority.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodiversidad , Biopelículas/crecimiento & desarrollo , Ríos/microbiología , Contaminación Química del Agua , Bacterias/genética , Análisis por Conglomerados , ADN de Algas/química , ADN de Algas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Eucariontes/clasificación , Eucariontes/genética , Eucariontes/aislamiento & purificación , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Filogenia , Ríos/química , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...