Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
EClinicalMedicine ; 70: 102530, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38510373

RESUMEN

Background: Growth faltering is well-recognized during acute childhood illness and growth acceleration during convalescence, with or without nutritional therapy, may occur. However, there are limited recent data on growth after hospitalization in low- and middle-income countries. Methods: We evaluated growth following hospitalization among children aged 2-23 months in sub-Saharan Africa and South Asia. Between November 2016 and January 2019, children were recruited at hospital admission and classified as: not-wasted (NW), moderately-wasted (MW), severely-wasted (SW), or having nutritional oedema (NO). We describe earlier (discharge to 45-days) and later (45- to 180-days) changes in length-for-age [LAZ], weight-for-age [WAZ], mid-upper arm circumference [MUACZ], weight-for-length [WLZ] z-scores, and clinical, nutritional, and socioeconomic correlates. Findings: We included 2472 children who survived to 180-days post-discharge: NW, 960 (39%); MW, 572 (23%); SW, 682 (28%); and NO, 258 (10%). During 180-days, LAZ decreased in NW (-0.27 [-0.36, -0.19]) and MW (-0.23 [-0.34, -0.11]). However, all groups increased WAZ (NW, 0.21 [95% CI: 0.11, 0.32]; MW, 0.57 [0.44, 0.71]; SW, 1.0 [0.88, 1.1] and NO, 1.3 [1.1, 1.5]) with greatest gains in the first 45-days. Of children underweight (<-2 WAZ) at discharge, 66% remained underweight at 180-days. Lower WAZ post-discharge was associated with age-inappropriate nutrition, adverse caregiver characteristics, small size at birth, severe or moderate anaemia, and chronic conditions, while lower LAZ was additionally associated with household-level exposures but not with chronic medical conditions. Interpretation: Underweight and poor linear growth mostly persisted after an acute illness. Beyond short-term nutritional supplementation, improving linear growth post-discharge may require broader individual and family support. Funding: Bill & Melinda Gates FoundationOPP1131320; National Institute for Health ResearchNIHR201813.

2.
Nutr Rev ; 81(12): 1636-1652, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36977352

RESUMEN

Severe acute malnutrition (SAM) is the most life-threatening form of undernutrition and underlies at least 10% of all deaths among children younger than 5 years in low-income countries. SAM is a complex, multisystem disease, with physiological perturbations observed in conjunction with the loss of lean mass, including structural and functional changes in many organ systems. Despite the high mortality burden, predominantly due to infections, the underlying pathogenic pathways remain poorly understood. Intestinal and systemic inflammation is heightened in children with SAM. Chronic inflammation and its consequent immunomodulation may explain the increased morbidity and mortality from infections in children with SAM, both during hospitalization and in the longer term after discharge. Recognition of the role of inflammation in SAM is critical in considering new therapeutic targets in this disease, which has not seen a transformational approach to treatment for several decades. This review highlights the central role of inflammation in the wide-ranging pathophysiology of SAM, as well as identifying potential interventions that have biological plausibility based on evidence from other inflammatory syndromes.


Asunto(s)
Desnutrición , Desnutrición Aguda Severa , Humanos , Niño , Lactante , Desnutrición Aguda Severa/epidemiología , Desnutrición Aguda Severa/terapia , Desnutrición/complicaciones , Inflamación , Intestinos
3.
Curr Opin Clin Nutr Metab Care ; 26(3): 245-252, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36930056

RESUMEN

PURPOSE OF REVIEW: Adequate nutrition is essential but insufficient for optimal childhood growth and development. Increasingly, it is clear that the gut microbiota modulates childhood growth and may be particularly important in low-income and middle-income countries (LMIC), where growth faltering, undernutrition, environmental contamination and enteric pathogens are more common. We summarize recent evidence demonstrating the role of the gut microbiota in impacting childhood growth and interventions targeting the gut microbiota to impact growth in children in LMIC settings. RECENT FINDINGS: Recent studies show that maturation of the infant microbiota is linked with the development of the immune system, which is key to host-microbe symbiosis. Infants lacking Bifidobacterium longum subsp. Infantis , which predominates breastfed microbiome, display immune activation while supplementation is linked to increased immune tolerance and among undernourished children, promotes growth. Microbiome-directed complimentary foods (MDCF) containing local ingredients is a novel strategy to promote gut microbiota development, especially among undernourished children and improve growth. Dietary patterns during pregnancy may drive selection of gut microbial species that impact infant health and growth. SUMMARY: Growth patterns among children in LMIC settings are closely associated with the diversity and maturity of the infant microbiome. Prebiotics, probiotics, and synbiotics targeting microbiota dysbiosis may impact birth outcomes, infant immune development and infections, and childhood growth in LMIC settings.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Probióticos , Embarazo , Femenino , Lactante , Niño , Humanos , Prebióticos , Lactancia Materna , Microbioma Gastrointestinal/fisiología
4.
Gates Open Res ; 6: 77, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36415883

RESUMEN

Introduction: Many acutely ill children in low- and middle-income settings have a high risk of mortality both during and after hospitalisation despite guideline-based care. Understanding the biological mechanisms underpinning mortality may suggest optimal pathways to target for interventions to further reduce mortality. The Childhood Acute Illness and Nutrition (CHAIN) Network ( www.chainnnetwork.org) Nested Case-Cohort Study (CNCC) aims to investigate biological mechanisms leading to inpatient and post-discharge mortality through an integrated multi-omic approach. Methods and analysis; The CNCC comprises a subset of participants from the CHAIN cohort (1278/3101 hospitalised participants, including 350 children who died and 658 survivors, and 270/1140 well community children of similar age and household location) from nine sites in six countries across sub-Saharan Africa and South Asia. Systemic proteome, metabolome, lipidome, lipopolysaccharides, haemoglobin variants, toxins, pathogens, intestinal microbiome and biomarkers of enteropathy will be determined. Computational systems biology analysis will include machine learning and multivariate predictive modelling with stacked generalization approaches accounting for the different characteristics of each biological modality. This systems approach is anticipated to yield mechanistic insights, show interactions and behaviours of the components of biological entities, and help develop interventions to reduce mortality among acutely ill children. Ethics and dissemination. The CHAIN Network cohort and CNCC was approved by institutional review boards of all partner sites. Results will be published in open access, peer reviewed scientific journals and presented to academic and policy stakeholders. Data will be made publicly available, including uploading to recognised omics databases. Trial registration NCT03208725.

6.
EBioMedicine ; 79: 103991, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35398787

RESUMEN

BACKGROUND: While fluid flows in a steady state from plasma, through interstitium, and into the lymph compartment, altered fluid distribution and oedema can result from abnormal Starling's forces, increased endothelial permeability or impaired lymphatic drainage. The mechanism of oedema formation, especially the primary role of hypoalbuminaemia, remains controversial. Here, we explored the roles of albumin and albumin-independent mechanisms in oedema formation among children with severe malnutrition (SM). METHODS: We performed secondary analysis of data obtained from two independent clinical trials in Malawi and Kenya (NCT02246296 and NCT00934492). We then used an unconventional strategy of comparing children with kwashiorkor and marasmus by matching (discovery cohort, n = 144) and normalising (validation cohort, n = 98, 2 time points) for serum albumin. Untargeted proteomics was used in the discovery cohort to determine plausible albumin-independent mechanisms associated with oedema, which was validated using enzyme-linked immunosorbent assay and multiplex assays in the validation cohort. FINDINGS: We demonstrated that low serum albumin is necessary but not sufficient to develop oedema in SM. We further found that markers of extracellular matrix (ECM) degradation rather than markers of EG degradation distinguished oedematous and non-oedematous children with SM. INTERPRETATION: Our results show that oedema formation has both albumin-dependent and independent mechanisms. ECM integrity appears to have a greater role in oedema formation than EG shedding in SM. FUNDING: Research Foundation Flanders (FWO), Thrasher Foundation (15122 and 9403), VLIR-UOS-Ghent University Global Minds Fund, Bill & Melinda Gates Foundation (OPP1131320), MRC/DfID/Wellcome Trust Global Health Trials Scheme (MR/M007367/1), Canadian Institutes of Health Research (156307), Wellcome Trust (WT083579MA).


Asunto(s)
Desnutrición Proteico-Calórica , Canadá , Niño , Edema/complicaciones , Matriz Extracelular/química , Humanos , Desnutrición Proteico-Calórica/complicaciones , Albúmina Sérica/análisis
7.
Sci Adv ; 8(7): eabj6779, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35171682

RESUMEN

Children admitted to hospital with an acute illness and concurrent severe malnutrition [complicated severe malnutrition (CSM)] have a high risk of dying. The biological processes underlying their mortality are poorly understood. In this case-control study nested within a multicenter randomized controlled trial among children with CSM in Kenya and Malawi, we found that blood metabolomic and proteomic profiles robustly differentiated children who died (n = 92) from those who survived (n = 92). Fatalities were characterized by increased energetic substrates (tricarboxylic acid cycle metabolites), microbial metabolites (e.g., propionate and isobutyrate), acute phase proteins (e.g., calprotectin and C-reactive protein), and inflammatory markers (e.g., interleukin-8 and tumor necrosis factor-α). These perturbations indicated disruptions in mitochondria-related bioenergetic pathways and sepsis-like responses. This study identified specific biomolecular disturbances associated with CSM mortality, revealing that systemic inflammation and bioenergetic deficits are targetable pathophysiological processes for improving survival of this vulnerable population.


Asunto(s)
Pacientes Internos , Desnutrición , Estudios de Casos y Controles , Niño , Humanos , Inflamación , Desnutrición/complicaciones , Proteómica
8.
Artículo en Inglés | MEDLINE | ID: mdl-33588295

RESUMEN

Human African Trypanosomiasis (HAT) is a disease of major economic importance in Sub-Saharan Africa. The HAT is caused by Trypanosoma brucei rhodesiense (Tbr) parasite in eastern and southern Africa, with suramin as drug of choice for treatment of early stage of the disease. Suramin treatment failures has been observed among HAT patients in Tbr foci in Uganda. In this study, we assessed Tbr parasite strains isolated from HAT patients responsive (Tbr EATRO-232) and non-responsive (Tbr EATRO-734) to suramin treatment in Busoga, Uganda for 1) putative role of suramin resistance in the treatment failure 2) correlation of suramin resistance with Tbr pathogenicity and 3) proteomic pathways underpinning the potential suramin resistance phenotype in vivo. We first assessed suramin response in each isolate by infecting male Swiss white mice followed by treatment using a series of suramin doses. We then assessed relative pathogenicity of the two Tbr isolates by assessing changes pathogenicity indices (prepatent period, survival and mortality). We finally isolated proteins from mice infected by the isolates, and assessed their proteomic profiles using mass spectrometry. We established putative resistance to 2.5 mg/kg suramin in the parasite Tbr EATRO-734. We established that Tbr EATRO-734 proliferated slower and has significantly enriched pathways associated with detoxification and metabolism of energy and drugs relative to Tbr EATRO-232. The Tbr EATRO-734 also has more abundantly expressed mitochondrion proteins and enzymes than Tbr EATRO-232. The suramin treatment failure may be linked to the relatively higher resistance to suramin in Tbr EATRO-734 than Tbr EATRO-232, among other host and parasite specific factors. However, the Tbr EATRO-734 appears to be less pathogenic than Tbr EATRO-232, as evidenced by its lower rate of parasitaemia. The Tbr EATRO-734 putatively surmount suramin challenges through induction of energy metabolism pathways. These cellular and molecular processes may be involved in suramin resistance in Tbr.


Asunto(s)
Parásitos , Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Humanos , Masculino , Ratones , Proteómica , Suramina/farmacología , Trypanosoma brucei rhodesiense , Tripanosomiasis Africana/tratamiento farmacológico , Uganda/epidemiología
9.
Wellcome Open Res ; 5: 46, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33336080

RESUMEN

Background: In advanced HIV, significant mortality occurs soon after starting antiretroviral treatment (ART) in low- and middle-incomes countries. Calprotectin is a biomarker of innate response to infection and inflammatory conditions. We examined the association between plasma calprotectin at initiation of ART and mortality among individuals with advanced HIV. Methods: We conducted a pilot case-cohort study among HIV infected adults and children over 5 years old with CD4 + <100/mm 3 at ART initiation at two Kenyan sites. Participants received three factorial randomised interventions in addition to ART within the REALITY trial ( ISRCTN43622374). Calprotectin was measured by ELISA in archived plasma of those who died within 24 weeks (cases) and randomly selected participants who survived for 48 weeks (non-cases) for whom samples were available. Factors associated with baseline plasma calprotectin were investigated using linear regression. To test association with mortality, Cox proportional hazards models with inverse sampling probability weights and adjusted for age, sex, site, BMI, viral load, randomised treatments, and clustered by CD4 count were fitted. Results: Baseline median (IQR) plasma calprotectin was 6.82 (2.65-12.5) µg/ml in cases (n=39) and 5.01 (1.92-11.5) µg/ml in non-cases (n=58). Baseline calprotectin was associated with age, neutrophil count and the presence of cough, but not other measured indicators of infection. In adjusted multivariable models, baseline calprotectin was associated with subsequent mortality: HR 1.64 (95% CI 1.11 - 2.42) and HR 2.77 (95% CI 1.58 - 4.88) for deaths during the first twenty-four and four weeks respectively. Calprotectin levels fell between baseline and 4 weeks among both cases and non-cases irrespective of randomised interventions. Conclusion: Among individuals with advanced HIV starting ART in Kenya, plasma calprotectin may have potential as a biomarker of early mortality. Validation in larger studies, comparison with other biomarkers and investigation of the sources of infection and inflammation are warranted.

10.
Sci Rep ; 10(1): 11235, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641735

RESUMEN

HIV infection affects up to 30% of children presenting with severe acute malnutrition (SAM) in Africa and is associated with increased mortality. Children with SAM are treated similarly regardless of HIV status, although mechanisms of nutritional recovery in HIV and/or SAM are not well understood. We performed a secondary analysis of a clinical trial and plasma proteomics data among children with complicated SAM in Kenya and Malawi. Compared to children with SAM without HIV (n = 113), HIV-infected children (n = 54) had evidence (false discovery rate (FDR) corrected p < 0.05) of metabolic stress, including enriched pathways related to inflammation and lipid metabolism. Moreover, we observed reduced plasma levels of zinc-α-2-glycoprotein, butyrylcholinesterase, and increased levels of complement C2 resembling findings in metabolic syndrome, diabetes and other non-communicable diseases. HIV was also associated (FDR corrected p < 0.05) with higher plasma levels of inflammatory chemokines. Considering evidence of biomarkers of metabolic stress, it is of potential concern that our current treatment strategy for SAM regardless of HIV status involves a high-fat therapeutic diet. The results of this study suggest a need for clinical trials of therapeutic foods that meet the specific metabolic needs of children with HIV and SAM.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Infecciones por VIH/metabolismo , Terapia Nutricional/métodos , Desnutrición Aguda Severa/terapia , Estrés Fisiológico/inmunología , Biomarcadores/sangre , Preescolar , Comorbilidad , Femenino , Infecciones por VIH/sangre , Infecciones por VIH/epidemiología , Infecciones por VIH/inmunología , Humanos , Lactante , Kenia/epidemiología , Metabolismo de los Lípidos/inmunología , Malaui/epidemiología , Masculino , Estado Nutricional , Proteómica , Desnutrición Aguda Severa/sangre , Desnutrición Aguda Severa/epidemiología , Desnutrición Aguda Severa/inmunología
11.
Wellcome Open Res ; 5: 248, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33969227

RESUMEN

Background: Rapid growth should occur among children with severe malnutrition (SM) with medical and nutritional management. Systemic inflammation (SI) is associated with death among children with SM and is negatively associated with linear growth. However, the relationship between SI and weight gain during therapeutic feeding following acute illness is unknown. We hypothesised that growth post-hospital discharge is associated with SI among children with SM. Methods: We conducted secondary analysis of data from HIV-uninfected children with SM (n=98) who survived and were not readmitted to hospital during one year of follow-up. We examined the relationship between changes in absolute deficits in weight and mid-upper-arm circumference (MUAC) from enrolment at stabilisation to 60 days and one year later, and untargeted plasma proteome, targeted cytokines/chemokines, leptin, and soluble CD14 using multivariate regularized linear regression. Results: The mean change in absolute deficit in weight and MUAC was -0.50kg (standard deviation; SD±0.69) and -1.20cm (SD±0.89), respectively, from enrolment to 60 days later. During the same period, mean weight and MUAC gain was 3.3g/kg/day (SD±2.4) and 0.22mm/day (SD±0.2), respectively. Enrolment interleukins; IL17-alpha and IL-2, and serum amyloid P were negatively associated with weight and MUAC gain during 60 days. Lipopolysaccharide binding protein and complement component 2 were negatively associated with weight gain only. Leptin was positively associated with weight gain. Soluble CD14, beta-2 microglobulin, and macrophage inflammatory protein 1 beta were negatively associated with MUAC gain only. Glutathione peroxidase 3 was positively associated with weight and MUAC gain during one year. Conclusions: Early post-hospital discharge weight and MUAC gain were rapid and comparable to children with uncomplicated SM treated in the community. Higher concentrations of SI markers were associated with less weight and MUAC gain, suggesting inflammation negatively impacts recovery from wasting. This finding warrants further research on reducing inflammation on growth among children with SM.

12.
Matern Child Nutr ; 16(2): e12913, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31756291

RESUMEN

Hospital readmission is common among children with complicated severe acute malnutrition (cSAM) but not well-characterised. Two distinct cSAM phenotypes, marasmus and kwashiorkor, exist, but their pathophysiology and whether the same phenotype persists at relapse are unclear. We aimed to test the association between cSAM phenotype at index admission and readmission following recovery. We performed secondary data analysis from a multicentre randomised trial in Kenya with 1-year active follow-up. The main outcome was cSAM phenotype upon hospital readmission. Among 1,704 HIV-negative children with cSAM discharged in the trial, 177 children contributed a total of 246 readmissions with cSAM. cSAM readmission was associated with age<12 months (p = .005), but not site, sex, season, nor cSAM phenotype. Of these, 42 children contributed 44 readmissions with cSAM that occurred after a monthly visit when SAM was confirmed absent (cSAM relapse). cSAM phenotype was sustained during cSAM relapse. The adjusted odds ratio for presenting with kwashiorkor during readmission after kwashiorkor at index admission was 39.3 [95% confidence interval (95% CI) [2.69, 1,326]; p = .01); and for presenting with marasmus during readmission after kwashiorkor at index admission was 0.02 (95% CI [0.001, 0.037]; p = .01). To validate this finding, we examined readmissions to Kilifi County Hospital, Kenya occurring at least 2 months after an admission with cSAM. Among 2,412 children with cSAM discharged alive, there were 206 readmissions with cSAM. Their phenotype at readmission was significantly influenced by their phenotype at index admission (p < .001). This is the first report describing the phenotype and rate of cSAM recurrence.


Asunto(s)
Trastornos de la Nutrición del Niño/epidemiología , Hospitalización/estadística & datos numéricos , Readmisión del Paciente/estadística & datos numéricos , Desnutrición Aguda Severa/epidemiología , Factores de Edad , Trastornos de la Nutrición del Niño/terapia , Preescolar , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Lactante , Kenia/epidemiología , Masculino , Fenotipo , Recurrencia , Estudios Retrospectivos , Desnutrición Aguda Severa/terapia
14.
Nat Commun ; 10(1): 2218, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101811

RESUMEN

RSV infection is typically associated with secondary bacterial infection. We hypothesise that the local airway immune response to RSV has incidental antibacterial effects. Using coordinated proteomics and metagenomics analysis we simultaneously analysed the microbiota and proteomes of the upper airway and determined direct antibacterial activity in airway secretions of RSV-infected children. Here, we report that the airway abundance of Streptococcus was higher in samples collected at the time of RSV infection compared with samples collected one month later. RSV infection is associated with neutrophil influx into the airway and degranulation and is marked by overexpression of proteins with known antibacterial activity including BPI, EPX, MPO and AZU1. Airway secretions of children infected with RSV, have significantly greater antibacterial activity compared to RSV-negative controls. This RSV-associated, neutrophil-mediated antibacterial response in the airway appears to act as a regulatory mechanism that modulates bacterial growth in the airways of RSV-infected children.


Asunto(s)
Infecciones Bacterianas/inmunología , Neutrófilos/inmunología , Mucosa Respiratoria/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Infecciones Bacterianas/microbiología , Degranulación de la Célula/inmunología , Preescolar , Humanos , Lactante , Recién Nacido , Kenia , Metagenómica/métodos , Microbiota/inmunología , Proteómica/métodos , Mucosa Respiratoria/citología , Mucosa Respiratoria/microbiología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Streptococcus/inmunología , Streptococcus/aislamiento & purificación
15.
Sci Rep ; 9(1): 5981, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30979939

RESUMEN

High mortality after discharge from hospital following acute illness has been observed among children with Severe Acute Malnutrition (SAM). However, mechanisms that may be amenable to intervention to reduce risk are unknown. We performed a nested case-control study among HIV-uninfected children aged 2-59 months treated for complicated SAM according to WHO recommendations at four Kenyan hospitals. Blood was drawn from 1778 children when clinically judged stable before discharge from hospital. Cases were children who died within 60 days. Controls were randomly selected children who survived for one year without readmission to hospital. Untargeted proteomics, total protein, cytokines and chemokines, and leptin were assayed in plasma and corresponding biological processes determined. Among 121 cases and 120 controls, increased levels of calprotectin, von Willebrand factor, angiotensinogen, IL8, IL15, IP10, TNFα, and decreased levels of leptin, heparin cofactor 2, and serum paraoxonase were associated with mortality after adjusting for possible confounders. Acute phase responses, cellular responses to lipopolysaccharide, neutrophil responses to bacteria, and endothelial responses were enriched among cases. Among apparently clinically stable children with SAM, a sepsis-like profile is associated with subsequent death. This may be due to ongoing bacterial infection, translocated bacterial products or deranged immune response during nutritional recovery.


Asunto(s)
Desnutrición Aguda Severa/sangre , Desnutrición Aguda Severa/mortalidad , Biomarcadores/sangre , Estudios de Casos y Controles , Femenino , Humanos , Lactante , Masculino , Alta del Paciente , Factores de Tiempo
16.
Front Immunol ; 9: 2866, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619257

RESUMEN

Passive transfer studies in humans clearly demonstrated the protective role of IgG antibodies against malaria. Identifying the precise parasite antigens that mediate immunity is essential for vaccine design, but has proved difficult. Completion of the Plasmodium falciparum genome revealed thousands of potential vaccine candidates, but a significant bottleneck remains in their validation and prioritization for further evaluation in clinical trials. Focusing initially on the Plasmodium falciparum merozoite proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic approaches, to select and prioritize potential immune targets. We expressed 109 P. falciparum recombinant proteins, the majority of which were obtained using a mammalian expression system that has been shown to produce biologically functional extracellular proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate high-throughput multiplexed antibody detection from individual samples. The microarray assay was highly specific; antibodies against P. falciparum proteins were detected exclusively in sera from malaria-exposed but not malaria-naïve individuals. The intensity of antibody reactivity varied as expected from strong to weak across well-studied antigens such as AMA1 and RH5 (Kruskal-Wallis H test for trend: p < 0.0001). The inter-assay and intra-assay variability was minimal, with reproducible results obtained in re-assays using the same chip over a duration of 3 months. Antibodies quantified using the multiplexed format in KILchip v1.0 were highly correlated with those measured in the gold-standard monoplex ELISA [median (range) Spearman's R of 0.84 (0.65-0.95)]. KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad applicability to studies of naturally acquired immunity against malaria by providing a standardized tool for the detection of antibody correlates of protection. It will facilitate rapid high-throughput validation and prioritization of potential Plasmodium falciparum merozoite-stage antigens paving the way for urgently needed clinical trials for the next generation of malaria vaccines.


Asunto(s)
Malaria Falciparum/inmunología , Merozoítos/inmunología , Plasmodium falciparum/inmunología , Análisis por Matrices de Proteínas/métodos , Proteoma/inmunología , Proteómica/métodos , Prioridades en Salud , Vacunas contra la Malaria/inmunología , Malaria Falciparum/microbiología , Merozoítos/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiología , Proteoma/metabolismo , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Investigación
17.
Wellcome Open Res ; 2: 47, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29181450

RESUMEN

Background. Few hospitals in high malaria endemic countries in Africa have the diagnostic capacity for clinically distinguishing acute bacterial meningitis (ABM) from cerebral malaria (CM). As a result, empirical use of antibiotics is necessary. A biochemical marker of ABM would facilitate precise clinical diagnosis and management of these infections and enable rational use of antibiotics. Methods. We used label-free protein quantification by mass spectrometry to identify cerebrospinal fluid (CSF) markers that distinguish ABM (n=37) from CM (n=22) in Kenyan children. Fold change (FC) and false discovery rates (FDR) were used to identify differentially expressed proteins. Subsequently, potential biomarkers were assessed for their ability to discriminate between ABM and CM using receiver operating characteristic (ROC) curves. Results. The host CSF proteome response to ABM ( Haemophilusinfluenza and Streptococcuspneumoniae) is significantly different to CM. Fifty two proteins were differentially expressed (FDR<0.01, Log FC≥2), of which 83% (43/52) were upregulated in ABM compared to CM. Myeloperoxidase and lactotransferrin were present in 37 (100%) and 36 (97%) of ABM cases, respectively, but absent in CM (n=22). Area under the ROC curve (AUC), sensitivity, and specificity were assessed for myeloperoxidase (1, 1, and 1; 95% CI, 1-1) and lactotransferrin (0.98, 0.97, and 1; 95% CI, 0.96-1). Conclusion. Myeloperoxidase and lactotransferrin have a high potential to distinguish ABM from CM and thereby improve clinical management. Their validation requires a larger cohort of samples that includes other bacterial aetiologies of ABM.

18.
PLoS One ; 10(8): e0135326, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26267894

RESUMEN

Heat shock proteins (Hsps) play an important role in the development and pathogenicity of malaria parasites. One of the most prominent functions of Hsps is to facilitate the folding of other proteins. Hsps are thought to play a crucial role when malaria parasites invade their host cells and during their subsequent development in hepatocytes and red blood cells. It is thought that Hsps maintain proteostasis under the unfavourable conditions that malaria parasites encounter in the host environment. Although heat shock protein 70 (Hsp70) is capable of independent folding of some proteins, its functional cooperation with heat shock protein 90 (Hsp90) facilitates folding of some proteins such as kinases and steroid hormone receptors into their fully functional forms. The cooperation of Hsp70 and Hsp90 occurs through an adaptor protein called Hsp70-Hsp90 organising protein (Hop). We previously characterised the Hop protein from Plasmodium falciparum (PfHop). We observed that the protein co-localised with the cytosol-localised chaperones, PfHsp70-1 and PfHsp90 at the blood stages of the malaria parasite. In the current study, we demonstrated that PfHop is a stress-inducible protein. We further explored the direct interaction between PfHop and PfHsp70-1 using far Western and surface plasmon resonance (SPR) analyses. The interaction of the two proteins was further validated by co-immunoprecipitation studies. We observed that PfHop and PfHsp70-1 associate in the absence and presence of either ATP or ADP. However, ADP appears to promote the association of the two proteins better than ATP. In addition, we investigated the specific interaction between PfHop TPR subdomains and PfHsp70-1/ PfHsp90, using a split-GFP approach. This method allowed us to observe that TPR1 and TPR2B subdomains of PfHop bind preferentially to the C-terminus of PfHsp70-1 compared to PfHsp90. Conversely, the TPR2A motif preferentially interacted with the C-terminus of PfHsp90. Finally, we observed that recombinant PfHop occasionally eluted as a protein species of twice its predicted size, suggesting that it may occur as a dimer. We conducted SPR analysis which suggested that PfHop is capable of self-association in presence or absence of ATP/ADP. Overall, our findings suggest that PfHop is a stress-inducible protein that directly associates with PfHsp70-1 and PfHsp90. In addition, the protein is capable of self-association. The findings suggest that PfHop serves as a module that brings these two prominent chaperones (PfHsp70-1 and PfHsp90) into a functional complex. Since PfHsp70-1 and PfHsp90 are essential for parasite growth, findings from this study are important towards the development of possible antimalarial inhibitors targeting the cooperation of these two chaperones.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas HSP70 de Choque Térmico/química , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Protozoarias/química
19.
Int J Biochem Cell Biol ; 62: 47-53, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25701168

RESUMEN

Heat shock proteins, many of which function as molecular chaperones, play important roles in the lifecycle and pathogenesis of the malaria parasite, Plasmodium falciparum. The P. falciparum heat shock protein 70 (PfHsp70) family of chaperones is potentially regulated by a large complement of J proteins that localize to various intracellular compartments including the infected erythrocyte cytosol. While PfHsp70-1 has been shown to be an abundant cytosolic chaperone, its regulation by J proteins is poorly understood. In this study, we characterized the J protein PFB0595w, a homologue of the well-studied yeast cytosolic J protein, Sis1. PFB0595w, similarly to PfHsp70-1, was localized to the parasite cytosol and its expression was upregulated by heat shock. Additionally, recombinant PFB0595w was shown to be dimeric and to stimulate the in vitro ATPase activity of PfHsp70-1. Overall, the expression, localization and biochemical data for PFB0595w suggest that it may function as a cochaperone of PfHsp70-1, and advances current knowledge on the chaperone machinery of the parasite.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas del Choque Térmico HSP72/metabolismo , Chaperonas Moleculares/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Adenosina Trifosfatasas/metabolismo , Citosol/metabolismo , Eritrocitos/parasitología , Humanos , Hidrólisis , Técnicas In Vitro , Plasmodium falciparum/citología , Unión Proteica , Multimerización de Proteína , Distribución Tisular
20.
Curr Pharm Des ; 19(3): 387-403, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22920898

RESUMEN

Human malaria is an economically important disease caused by single-celled parasites of the Plasmodium genus whose biology displays great evolutionary adaptation to both its mammalian host and transmitting vectors. While the parasite has multiple life cycle stages, it is in the blood stage where clinical symptoms of the disease are manifested. Following erythrocyte entry, the parasite resides in the parasitophorous vacuole and actively transports its own proteins to the erythrocyte cytosol. This host-parasite "cross-talk" results in tremendous modifications of the infected erythrocyte imparting properties that allow it to adhere to the endothelium preventing splenic clearance. The Hsp70-J protein (DnaJ/Hsp40) molecular chaperone machinery, involved in cellular protein homeostasis, is being investigated as a novel drug target in various cellular systems including malaria. In Plasmodium the diverse chaperone complement is intimately involved in infected erythrocyte remodelling associated with the development and pathogenesis of malaria. In this review, we provide an overview of the Hsp70-J protein chaperone complement in Plasmodium falciparum and compare it with other Plasmodium species including the ones that serve as experimental study models for malaria. We propose that the unique traits possessed by this machinery not only provide avenues for drug targeting but also inform the evolutionary fitness of this parasite to its environment.


Asunto(s)
Sistemas de Liberación de Medicamentos/tendencias , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Malaria/metabolismo , Plasmodium/metabolismo , Animales , Antiprotozoarios/administración & dosificación , Antiprotozoarios/metabolismo , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Humanos , Malaria/tratamiento farmacológico , Filogenia , Plasmodium/genética , Primates , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Roedores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...