Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Pharmacology ; 102(1-2): 9-16, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29672318

RESUMEN

BACKGROUND: 2-Methoxyestradiol (2ME2) is an endogenous metabolite of 17-ß-estradiol with anti-proliferative and anti-angiogenic properties. Due to 2ME2's rapid metabolism and low oral bioavailability in in vivo settings, 2ME2 analogues have been designed to alleviate these issues. One of these compounds is 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene (ESE-16). A previous work alluded to the ability of ESE-16 to induce autophagic cell death. Therefore, we investigated the mode of action of ESE-16 by studying its effects on autophagy, vesicle formation, and lysosomal organisation. SUMMARY: Vesicle formation and autophagy induction were analysed by transmission electron microscopy (TEM), monodansylcadaverine (MDC) staining and Lysotracker staining, while autophagosome turnover was analysed using microtubule-associated protein 1A/1B-light chain 3 (LC3 lipidation) analysis. MDC staining of acidic vesicles revealed an increase both in the number and size of vesicles after ESE-16 exposure. This was confirmed by TEM. Lysotracker staining indicated an increase in the size of lysosomes, as well as changes in their distribution within the cell. However, autophagy was not induced, since LC3 lipidation did not increase after exposure to ESE-16. Key -Messages: This study showed that ESE-16 exposure leads to the aggregation of acidic vesicles, identified as lysosomes, not accompanied by an induction of autophagy. Therefore, ESE-16 disrupts normal endocytic vesicle maturation likely through the inhibition of the microtubule function.


Asunto(s)
Autofagia/efectos de los fármacos , Estrenos/farmacología , Lisosomas/efectos de los fármacos , Sulfonamidas/farmacología , Línea Celular Tumoral , Humanos , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo
2.
Biol Res ; 47: 39, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25299962

RESUMEN

BACKGROUND: Novel, in silico-designed anticancer compounds were synthesized in our laboratory namely, 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10),15-tetraen-17-ol (ESE-15-ol) and 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene (ESE-16). These compounds were designed to have improved bioavailability when compared to their source compound, 2-methoxyestradiol. This theoretically would be due to their increased binding affinity to carbonic anhydrase II, present in erythrocytes. Since the novel compounds under investigation are proposed to be transported within erythrocytes bound to carbonic anhydrase II, the morphological effect which they may exert on whole blood and erythrocytes is of great significance. A secondary outcome included revision of previously reported procedures for the handling of the whole blood sample. The purpose of this study was twofold. Firstly, the ultrastructural morphology of a healthy female's erythrocytes was examined via scanning electron microscopy (SEM) after exposure to the newly in silico-designed compounds. Morphology of erythrocytes following exposure to ESE-15-ol and ESE-16 for 3 minutes and 24 hours at 22°C were described with the use of SEM. The haemolytic activity of the compounds after 24 hours exposure were also determined with the ex vivo haemolysis assay. Secondly, storage conditions of the whole blood sample were investigated by determining morphological changes after a 24 hour storage period at 22°C and 37°C. RESULTS: No significant morphological changes were observed in the erythrocyte morphology after exposure to the novel anticancer compounds. Storage of the whole blood samples at 37°C for 24 hours resulted in visible morphological stress in the erythrocytes. Erythrocytes incubated at 22°C for 24 hours showed no structural deformity or distress. CONCLUSIONS: From this research the optimal temperature for ex vivo exposure of whole blood samples to ESE-15-ol and ESE-16 for 24 hours was determined to be 22°C. Data from this study revealed the potential of these compounds to be applied to ex vivo study techniques, since no damage occurred to erythrocytes ultrastructure under these conditions. As no structural changes were observed in erythrocytes exposed to ESE-15-ol and ESE-16, further ex vivo experiments will be conducted into the potential effects of these compounds on whole blood. Optimal incubation conditions up to 24 hours for whole blood were established as a secondary outcome.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Simulación por Computador , Eritrocitos/efectos de los fármacos , Estradiol/análogos & derivados , Estrenos/farmacología , Sulfonamidas/farmacología , Antineoplásicos/farmacocinética , Disponibilidad Biológica , Anhidrasa Carbónica II/efectos de los fármacos , Inhibidores de Anhidrasa Carbónica/farmacocinética , Proteínas Portadoras/farmacocinética , Proteínas Portadoras/farmacología , Descubrimiento de Drogas , Eritrocitos/ultraestructura , Estradiol/farmacocinética , Estradiol/farmacología , Estradiol/toxicidad , Estrenos/farmacocinética , Femenino , Hemólisis/efectos de los fármacos , Humanos , Microscopía Electrónica de Rastreo , Persona de Mediana Edad , Investigación Cualitativa , Sulfonamidas/farmacocinética , Sulfonamidas/toxicidad , Temperatura
3.
Cell Mol Biol Lett ; 19(1): 98-115, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24563014

RESUMEN

Cancer is the second leading cause of death in South Africa. The critical role that microtubules play in cell division makes them an ideal target for the development of chemotherapeutic drugs that prevent the hyperproliferation of cancer cells. The new in silico-designed estradiol analogue 2-ethyl-3-O-sulfamoylestra-1,3,5(10)16-tetraene (ESE-16) was investigated in terms of its in vitro antiproliferative effects on the esophageal carcinoma SNO cell line at a concentration of 0.18 µM and an exposure time of 24 h. Polarization-optical differential interference contrast and triple fluorescent staining (propidium iodide, Hoechst 33342 and acridine orange) revealed a decrease in cell density, metaphase arrest, and the occurrence of apoptotic bodies in the ESE-16-treated cells when compared to relevant controls. Treated cells also showed an increase in the presence of acidic vacuoles and lysosomes, suggesting the occurrence of autophagic processes. Cell death via autophagy was confirmed using the Cyto-ID autophagy detection kit and the aggresome detection assay. Results showed an increase in autophagic vacuole and aggresome formation in ESE-16 treated cells, confirming the induction of cell death via autophagy. Cell cycle progression demonstrated an increase in the sub-G1 fraction (indicative of the presence of apoptosis). In addition, a reduction in mitochondrial membrane potential was also observed, which suggests the involvement of apoptotic cell death induced by ESE-16 via the intrinsic apoptotic pathway. In this study, it was demonstrated that ESE-16 induces cell death via both autophagy and apoptosis in esophageal carcinoma cells. This study paves the way for future investigation into the role of ESE-16 in ex vivo and in vivo studies as a possible anticancer agent.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias Esofágicas/tratamiento farmacológico , Estradiol/administración & dosificación , Estrenos/administración & dosificación , Sulfonamidas/administración & dosificación , Línea Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Estradiol/análogos & derivados , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
4.
Biol. Res ; 47: 1-7, 2014. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-950735

RESUMEN

BACKGROUND: Novel, in silico-designed anticancer compounds were synthesized in our laboratory namely, 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10),15-tetraen-17-ol (ESE-15-ol) and 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10)16-tetraene (ESE-16). These compounds were designed to have improved bioavailability when compared to their source compound, 2-methoxyestradiol. This theoretically would be due to their increased binding affinity to carbonic anhydrase II, present in erythrocytes. Since the novel compounds under investigation are proposed to be transported within erythrocytes bound to carbonic anhydrase II, the morphological effect which they may exert on whole blood and erythrocytes is of great significance. A secondary outcome included revision of previously reported procedures for the handling of the whole blood sample. The purpose of this study was twofold. Firstly, the ultrastructural morphology of a healthy female's erythrocytes was examined via scanning electron microscopy (SEM) after exposure to the newly in silico-designed compounds. Morphology of erythrocytes following exposure to ESE-15-ol and ESE-16 for 3 minutes and 24 hours at 22°C were described with the use of SEM. The haemolytic activity of the compounds after 24 hours exposure were also determined with the ex vivo haemolysis assay. Secondly, storage conditions of the whole blood sample were investigated by determining morphological changes after a 24 hour storage period at 22°C and 37°C. RESULTS: No significant morphological changes were observed in the erythrocyte morphology after exposure to the novel anticancer compounds. Storage of the whole blood samples at 37°C for 24 hours resulted in visible morphological stress in the erythrocytes. Erythrocytes incubated at 22°C for 24 hours showed no structural deformity or distress. CONCLUSIONS: From this research the optimal temperature for ex vivo exposure of whole blood samples to ESE-15-ol and ESE-16 for 24 hours was determined to be 22°C. Data from this study revealed the potential of these compounds to be applied to ex vivo study techniques, since no damage occurred to erythrocytes ultrastructure under these conditions. As no structural changes were observed in erythrocytes exposed to ESE-15-ol and ESE-16, further ex vivo experiments will be conducted into the potential effects of these compounds on whole blood. Optimal incubation conditions up to 24 hours for whole blood were established as a secondary outcome.


Asunto(s)
Humanos , Femenino , Persona de Mediana Edad , Sulfonamidas/farmacología , Simulación por Computador , Inhibidores de Anhidrasa Carbónica/farmacología , Eritrocitos/efectos de los fármacos , Estradiol/análogos & derivados , Estrenos/farmacología , Antineoplásicos/farmacología , Sulfonamidas/toxicidad , Sulfonamidas/farmacocinética , Temperatura , Inhibidores de Anhidrasa Carbónica/farmacocinética , Disponibilidad Biológica , Microscopía Electrónica de Rastreo , Proteínas Portadoras/farmacología , Proteínas Portadoras/farmacocinética , Anhidrasa Carbónica II/efectos de los fármacos , Investigación Cualitativa , Eritrocitos/ultraestructura , Estradiol/toxicidad , Estradiol/farmacología , Estradiol/farmacocinética , Estrenos/farmacocinética , Descubrimiento de Drogas , Hemólisis/efectos de los fármacos , Antineoplásicos/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...