Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomedicine ; 44: 102573, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35728739

RESUMEN

Photothermal therapy (PTT) is a promising cancer treatment that debulks tumors locally while priming immune responses. However, PTT as a standalone treatment approach often has limited systemic efficacy, motivating the development of synergistic combination approaches. Toward this goal, herein, the tobacco mosaic virus (TMV) was loaded with a small molecule immunomodulator, toll-like receptor 7 agonist (1V209), and its surface was coated with photothermal biopolymer polydopamine (PDA). The resulting 1V209-laden and PDA-coated TMV was used to treat B16F10 dermal melanoma in C57BL/6 mice. 1V209-TMV-PDA was intratumorally injected and irradiated using an 808-nm near infrared laser. 60 % of the mice receiving PTT with intratumoral 1V209-TMV-PDA + laser remained alive at the end point - in contrast to only 20 % survivors were observed in the control group. Immunological analysis indicates systemic anti-tumor immunity being induced by the combination therapy with a greater number of tumor-specific T cells (as determined by a splenocyte assay). This study highlights the potential of TMV versatility as a multifunctional nano-platform for combined PTT-immunotherapy.


Asunto(s)
Melanoma , Nanopartículas , Virus del Mosaico del Tabaco , Adyuvantes Inmunológicos , Animales , Línea Celular Tumoral , Inmunoterapia , Indoles , Ratones , Ratones Endogámicos C57BL , Fototerapia , Polímeros , Receptor Toll-Like 7
2.
ACS Biomater Sci Eng ; 8(6): 2518-2525, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35522951

RESUMEN

Despite advances in laparoscopic surgery combined with neoadjuvant and adjuvant therapy, colon cancer management remains challenging in oncology. Recurrence of cancerous tissue locally or in distant organs (metastasis) is the major problem in colon cancer management. Vaccines and immunotherapies hold promise in preventing cancer recurrence through stimulation of the immune system. We and others have shown that nanoparticles from plant viruses, such as cowpea mosaic virus (CPMV) nanoparticles, are potent immune adjuvants for cancer vaccines and serve as immunostimulatory agents in the treatment or prevention of tumors. While being noninfectious toward mammals, CPMV activates the innate immune system through recognition by pattern recognition receptors (PRRs). While the particulate structure of CPMV is essential for prominent immune activation, the proteinaceous architecture makes CPMV subject to degradation in vivo; thus, CPMV immunotherapy requires repeated injections for optimal outcome. Frequent intraperitoneal (IP) injections however are not optimal from a clinical point of view and can worsen the patient's quality of life due to the hospitalization required for IP administration. To overcome the need for repeated IP injections, we loaded CPMV nanoparticles in injectable chitosan/glycerophosphate (GP) hydrogel formulations, characterized their slow-release potential, and assessed the antitumor preventative efficacy of CPMV-in-hydrogel single dose versus soluble CPMV (single and prime-boost administration). Using fluorescently labeled CPMV-in-hydrogel formulations, in vivo release data indicated that single IP injection of the hydrogel formulation yielded a gel depot that supplied intact CPMV over the study period of 3 weeks, while soluble CPMV lasted only for one week. IP administration of the CPMV-in-hydrogel formulation boosted with soluble CPMV for combined immediate and sustained immune activation significantly inhibited colon cancer growth after CT26 IP challenge in BALB/c mice. The observed antitumor efficacy suggests that CPMV can be formulated in a chitosan/GP hydrogel to achieve prolonged immunostimulatory effects as single-dose immunotherapy against colon cancer recurrence. The present findings illustrate the potential of injectable hydrogel technology to accommodate plant virus nanoparticles to boost the translational development of effective antitumor immunotherapies.


Asunto(s)
Quitosano , Neoplasias del Colon , Comovirus , Nanopartículas , Animales , Neoplasias del Colon/prevención & control , Comovirus/química , Comovirus/metabolismo , Hidrogeles/metabolismo , Hidrogeles/farmacología , Mamíferos , Ratones , Nanopartículas/química , Nanopartículas/uso terapéutico , Calidad de Vida
3.
Biomacromolecules ; 23(4): 1812-1825, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35344365

RESUMEN

Cowpea mosaic virus (CPMV) is a potent immunogenic adjuvant and epitope display platform for the development of vaccines against cancers and infectious diseases, including coronavirus disease 2019. However, the proteinaceous CPMV nanoparticles are rapidly degraded in vivo. Multiple doses are therefore required to ensure long-lasting immunity, which is not ideal for global mass vaccination campaigns. Therefore, we formulated CPMV nanoparticles in injectable hydrogels to achieve slow particle release and prolonged immunostimulation. Liquid formulations were prepared from chitosan and glycerophosphate (GP) before homogenization with CPMV particles at room temperature. The formulations containing high-molecular-weight chitosan and 0-4.5 mg mL-1 CPMV gelled rapidly at 37 °C (5-8 min) and slowly released cyanine 5-CPMV particles in vitro and in vivo. Importantly, when a hydrogel containing CPMV displaying severe acute respiratory syndrome coronavirus 2 spike protein epitope 826 (amino acid 809-826) was administered to mice as a single subcutaneous injection, it elicited an antibody response that was sustained over 20 weeks, with an associated shift from Th1 to Th2 bias. Antibody titers were improved at later time points (weeks 16 and 20) comparing the hydrogel versus soluble vaccine candidates; furthermore, the soluble vaccine candidates retained Th1 bias. We conclude that CPMV nanoparticles can be formulated effectively in chitosan/GP hydrogels and are released as intact particles for several months with conserved immunotherapeutic efficacy. The injectable hydrogel containing epitope-labeled CPMV offers a promising single-dose vaccine platform for the prevention of future pandemics as well as a strategy to develop long-lasting plant virus-based nanomedicines.


Asunto(s)
COVID-19 , Quitosano , Comovirus , Virus de Plantas , Vacunas , Animales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Preparaciones de Acción Retardada/farmacología , Epítopos , Humanos , Hidrogeles , Ratones , Glicoproteína de la Espiga del Coronavirus
4.
ACS Appl Mater Interfaces ; 14(11): 13692-13702, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35258299

RESUMEN

Plant viral nanoparticles (plant VNPs) are promising biogenetic nanosystems for the delivery of therapeutic, immunotherapeutic, and diagnostic agents. The production of plant VNPs is simple and highly scalable through molecular farming in plants. Some of the important advances in VNP nanotechnology include genetic modification, disassembly/reassembly, and bioconjugation. Although effective, these methods often involve complex and time-consuming multi-step protocols. Here, we report a simple and versatile supramolecular coating strategy for designing functional plant VNPs via metal-phenolic networks (MPNs). Specifically, this method gives plant viruses [e.g., tobacco mosaic virus (TMV), cowpea mosaic virus, and potato virus X] additional functionalities including photothermal transduction, photoacoustic imaging, and fluorescent labeling via different components in MPN coating [i.e., complexes of tannic acid (TA), metal ions (e.g., Fe3+, Zr4+, or Gd3+), or fluorescent dyes (e.g., rhodamine 6G and thiazole orange)]. For example, using TMV as a viral substrate by choosing Zr4+-TA and rhodamine 6G, fluorescence is observed peaking at 555 nm; by choosing Fe3+-TA coating, the photothermal conversion efficiency was increased from 0.8 to 33.2%, and the photoacoustic performance was significantly improved with a limit of detection of 17.7 µg mL-1. We further confirmed that TMV@Fe3+-TA nanohybrids show good cytocompatibility and excellent cell-killing performance in photothermal therapy with 808 nm irradiation. These findings not only prove the practical benefits of this supramolecular coating for designing multifunctional and biocompatible plant VNPs but also bode well for using such materials in a variety of plant virus-based theranostic applications.


Asunto(s)
Nanopartículas , Virus de Plantas , Virus del Mosaico del Tabaco , Nanopartículas/química , Nanotecnología , Preparaciones Farmacéuticas , Virus del Mosaico del Tabaco/química
5.
Biomater Sci ; 9(21): 7134-7150, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34591046

RESUMEN

Plant virus nanoparticles (VNPs) have multiple advantages over their synthetic counterparts including the cost-effective large-scale manufacturing of uniform particles that are easy to functionalize. Tobacco mosaic virus (TMV) is one of the most promising VNP scaffolds, reflecting its high aspect ratio and ability to carry and/or display multivalent therapeutic ligands and contrast agents. Here we investigated the circulation, protein corona, immunogenicity, and organ distribution/clearance of TMV particles internally co-labeled with cyanine 5 (Cy5) and chelated gadolinium (Gd) for dual tracking by fluorescence imaging and optical emission spectrometry, with or without an external coating of polydopamine (PDA) to confer photothermal and photoacoustic capabilities. The PDA-coated particles (Gd-Cy5-TMV-PDA) showed a shorter plasma circulation time and broader distribution to organs of the reticuloendothelial system (liver, lungs, and spleen) than uncoated Gd-Cy5-TMV particles (liver and spleen only). The Gd-Cy5-TMV-PDA particles were surrounded by 2-10-fold greater protein corona (containing mainly immunoglobulins) compared to Gd-Cy5-TMV particles. However, the enzyme-linked immunosorbent assay (ELISA) revealed that PDA-coated particles bind 2-fold lesser to anti-TMV antibodies elicited by particle injection than uncoated particles, suggesting that the PDA coat enables evasion from systemic antibody surveillance. Gd-Cy5-TMV-PDA particles were cleared from organs after 8 days compared to 5 days for the uncoated particles. The slower tissue clearance of the coated particles makes them ideal for theranostic applications by facilitating sustained local delivery in addition to multimodal imaging and photothermal capabilities. We have demonstrated the potential of PDA-coated proteinaceous nanoparticles for multiple biomedical applications.


Asunto(s)
Nanopartículas , Virus del Mosaico del Tabaco , Indoles , Polímeros , Medicina de Precisión
6.
Virology ; 556: 39-61, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33545555

RESUMEN

The application of nanoparticles for medical purposes has made enormous strides in providing new solutions to health problems. The observation that plant virus-based nanoparticles (VNPs) can be repurposed and engineered as smart bio-vehicles for targeted drug delivery and imaging has launched extensive research for improving the therapeutic and diagnostic management of various diseases. There is evidence that VNPs are promising high value nanocarriers with potential for translational development. This is mainly due to their unique features, encompassing structural uniformity, ease of manufacture and functionalization by means of expression, chemical biology and self-assembly. While the development pipeline is moving rapidly, with many reports focusing on engineering and manufacturing aspects to tailor the properties and efficacy of VNPs, fewer studies have focused on gaining insights into the nanotoxicity of this novel platform nanotechnology. Herein, we discuss the pharmacology of VNPs as a function of formulation and route of administration. VNPs are reviewed in the context of their application as therapeutic adjuvants or nanocarrier excipients to initiate, enhance, attenuate or impede the formulation's toxicity. The summary of the data however also underlines the need for meticulous VNP structure-nanotoxicity studies to improve our understanding of their in vivo fates and pharmacological profiles to pave the way for translation of VNP-based formulations into the clinical setting.


Asunto(s)
Portadores de Fármacos/farmacología , Nanopartículas/virología , Virus de Plantas/ultraestructura , Adyuvantes Inmunológicos/farmacología
7.
Adv Drug Deliv Rev ; 167: 19-46, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33202261

RESUMEN

Long acting injectable formulations have been developed to sustain the action of drugs in the body over desired periods of time. These delivery platforms have been utilized for both systemic and local drug delivery applications. This review gives an overview of long acting injectable systems that are currently in clinical use. These products are categorized in three different groups: biodegradable polymeric systems, including microparticles and implants; micro and nanocrystal suspensions and oil-based formulations. Furthermore, the applications of these drug delivery platforms for the management of various chronic diseases are summarized. Finally, this review addresses industrial challenges regarding the development of long acting injectable formulations.


Asunto(s)
Implantes Absorbibles , Preparaciones de Acción Retardada/química , Sistemas de Liberación de Medicamentos/métodos , Implantes de Medicamentos/química , Química Farmacéutica , Liberación de Fármacos , Emulsiones/química , Humanos , Microesferas , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Suspensiones/química
8.
J Fluoresc ; 30(3): 557-564, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32219628

RESUMEN

We herein report five different types of thiol dual capped cadmium tellurite quantum dots (CdTe QDs) namely glutathione-mercapto-propanoic acid (QD 1), glutathione-thiolglycolic acid (QD 2), L-cysteine-mercapto-propanoic acid (QD 3), L-cysteine- thiol-glycolic acid (QD 4) and mercapto-propanoic acid-thiol-glycolic (QD 5). Dual-capped CdTe QDs were prepared using a one pot synthetic method. Cadmium acetate and sodium tellurite were respectively used as cadmium and tellurium precursors. Photo-physical properties of the synthesized QDs were examined using UV-Vis and photoluminescence spectroscopy while structural characterization was performed by means of transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. The influence of pH on QD characteristics (fluorescence intensity) was studied using phosphate and citrate buffers and continuous titration with HCl (0.1 N). UV-vis and photoluminescence spectra exhibited sharp absorption band edge with high intensities and improved colloidal stability. All the QDs were found to be in nano-size rang. TEM analysis revealed the presence of spherical nanoparticles while FTIR evidenced successful dual-capping of QDs. Upon pH changes, QDs 3 and 4 demonstrated more remarkable variations in fluorescence intensity than QDs 1 and 2. The pH-sensitivity of these QDs represents a promising feature for further development of potential theranostic nano-devices.


Asunto(s)
Compuestos de Cadmio/química , Puntos Cuánticos/química , Telurio/química , Compuestos de Cadmio/síntesis química , Concentración de Iones de Hidrógeno , Estructura Molecular , Fenómenos Ópticos , Tamaño de la Partícula , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
9.
J Biomed Nanotechnol ; 16(1): 14-28, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31996282

RESUMEN

An inclusion complex of isoniazid-grafted phthalocyanine with gamma-cyclodextrin (Complex) was co-encapsulated with rifampicin (RIF) in crude soybean lecithin liposomes using a heating method. The encapsulation efficiency (%EE) of the Complex-RIF co-loaded liposomes (Rif-Complex-Lips) was determined using UV-Vis spectrophotometry. Rif-Complex-Lips formulations were evaluated using dynamic light scattering, transmission electron microscopy (TEM), 1H-NMR, absorption and emission spectroscopy. Dialysis was used for drug release study in two different media, pH 6.4 and 7.4. HeLa cells were used to assess potential cytotoxicity, and the uptake by lung fibroblasts and epithelial cells was investigated using fluorescence microscopy. The particle size and Zeta potential of Rif-Complex-Lips were approximately 594 nm and -50 mV. Spectroscopic analyses demonstrated molecular distribution of the cargo within the lipid core, and encapsulation efficiency of 58% for Complex and 86% for RIF. TEM analysis unveiled the existence of spherical nanoparticles in our samples, indicating the presence of liposomes. Rif-Complex-Lips exhibited much higher release rates for both INH and RIF at pH 6.4 compared to those tested at pH 7.4. In addition, there was no cytotoxicity on HeLa cells, but remarkable Rif-Complex-Lips internalization by peripheral lung fibroblasts and epithelial cells. Hence, Rif-Complex-Lips are promising vehicles for intracellular delivery of antimicrobial drugs.


Asunto(s)
Glycine max , Lecitinas , Química Farmacéutica , Ciclodextrinas , Células HeLa , Humanos , Indoles , Isoindoles , Isoniazida , Liposomas , Tamaño de la Partícula , Rifampin , Análisis Espectral
10.
Sci Rep ; 9(1): 11485, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391517

RESUMEN

Liposomes are reputed colloidal vehicles that hold the promise for targeted delivery of anti-tubercular drugs (ATBDs) to alveolar macrophages that host Mycobacterium tuberculosis. However, the costly status of liposome technology, particularly due to the use of special manufacture equipment and expensive lipid materials, may preclude wider developments of therapeutic liposomes. In this study, we report efficient encapsulation of a complex system, consisting of isoniazid-hydrazone-phthalocyanine conjugate (Pc-INH) in gamma-cyclodextrin (γ-CD), in liposomes using crude soybean lecithin by means of a simple organic solvent-free method, heating method (HM). Inclusion complexation was performed in solution and solid-state, and evaluated using UV-Vis, magnetic circular dichroism, 1H NMR, diffusion ordered spectroscopy and FT-IR. The HM-liposomes afforded good encapsulation efficiency (71%) for such a large Pc-INH/γ-CD complex (PCD) system. The stability and properties of the PCD-HM-liposomes look encouraging; with particle size 240 nm and Zeta potential -57 mV that remained unchanged upon storage at 4 °C for 5 weeks. The release study performed in different pH media revealed controlled release profiles that went up to 100% at pH 4.4, from about 40% at pH 7.4. This makes PCD-liposomes a promising system for site-specific ATBD delivery, and a good example of simple liposomal encapsulation of large hydrophobic compounds.


Asunto(s)
Antituberculosos/administración & dosificación , Preparaciones de Acción Retardada/administración & dosificación , Composición de Medicamentos/métodos , Isoniazida/administración & dosificación , Antituberculosos/química , Antituberculosos/farmacocinética , Química Farmacéutica , Ciclodextrinas/química , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Liberación de Fármacos , Estabilidad de Medicamentos , Calefacción , Humanos , Hidrazonas/administración & dosificación , Hidrazonas/química , Concentración de Iones de Hidrógeno , Indoles/administración & dosificación , Indoles/química , Isoindoles , Isoniazida/química , Isoniazida/farmacocinética , Liposomas , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Tuberculosis/tratamiento farmacológico
11.
Int J Pharm ; 526(1-2): 466-473, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28461265

RESUMEN

Tuberculosis (TB) is a poverty related infectious disease that is rapidly giving rise to public health concerns. Lengthy drug administration and frequent adverse side-effects associated with TB treatment make anti-tubercular drugs (ATDs) good candidates for drug delivery studies. This work aimed to formulate and prepare liposomes as a cost-effective option for ATD delivery. Liposomes were prepared by film hydration using crude soybean lecithin (CL) and not pure phospholipids as in the normal practice. Cholesterol was also used (up to 25% mass ratio), and isoniazid (INH) was encapsulated as model drug using a freeze-thaw loading technique. Purified soybean lecithin (PL) was also used for comparative purposes, under the same conditions. INH-loaded liposomes were characterized for particle size, Zeta Potential (ZP), encapsulation efficiency (EE) and drug release. Physicochemical properties were investigated using thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction and Fourier transform infrared. INH-loaded CL-based liposomes showed high EE (79±2.45%). The average particle size (813.00±9.21nm) and ZP (-42.80±4.31mV) of this formulation are promising for the treatment of TB by pulmonary delivery. These findings suggest the possibility of encapsulating ATDs in liposomes made of crude soybean lecithin that is cheap and readily available.


Asunto(s)
Glycine max/química , Isoniazida/química , Lecitinas/química , Liposomas/química , Química Farmacéutica , Liberación de Fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...