Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 919: 170691, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38325468

RESUMEN

Nickel hyperaccumulator plants play a major role in nickel recycling in ultramafic ecosystems, and under agromining the nickel dynamics in the farming system will be affected by removal of nickel-rich biomass. We investigated the biogeochemical cycling of nickel as well as key nutrients in an agromining operation that uses the metal crop Phyllanthus rufuschaneyi in the first tropical metal farm located in Borneo (Sabah, Malaysia). For two years, this study monitored nine 25-m2 plots and collected information on weather, biomass exportation, water, and litter fluxes to the soil. Without harvesting, nickel inputs and outputs had only minor contributions (<1 %) to the total nickel budget in this system. The nickel cycle was mainly driven by internal fluxes, particularly plant uptake, litterfall and throughfall. After two years of cropping, the nickel litter flux corresponded to 50 % of the total nickel stock in the aerial biomass (3.1 g m-2 year-1). Nickel was slowly released from the litter; after 15 months of degradation, 60 % of the initial biomass and the initial nickel quantities were still present in the organic layer. Calcium, phosphorus and potassium budgets in the system were negative without fertilisation. Unlike what is observed for nickel, sustained agromining would thus lead to a strong depletion of calcium stocks if mineral weathering cannot replenish it.


Asunto(s)
Ecosistema , Níquel , Níquel/análisis , Malasia , Granjas , Calcio/metabolismo , Agricultura , Suelo , Plantas/metabolismo
2.
Int J Phytoremediation ; 23(11): 1157-1168, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33586537

RESUMEN

The aim of this study was to assess the potential of the woody nickel hyperaccumulator species Blepharidium guatemalense (Standl.) Standl. for agromining in southeastern Mexico. Pot trials consisting of nickel dosing (0, 20, 50, 100, and 250 mg Ni kg-1), and synthetic and organic fertilization were conducted. Field trials were also undertaken with different harvesting regimes of B. guatemalense. Foliar nickel concentrations increased significantly with rising nickel additions, with a 300-fold increase at 250 mg Ni kg-1 treatment relative to the control. Synthetic fertilization strongly increased nickel uptake without any change in plant growth or biomass, whereas organic fertilization enhanced plant shoot biomass with a negligible effect on foliar nickel concentrations. A 5-year-old stand which was subsequently harvested twice per year produced the maximum nickel yield tree-1 yr-1, with an estimated total nickel yield of 142 kg ha-1 yr-1. Blepharidium guatemalense is a prime candidate for nickel agromining on account of its high foliar Ni concentrations, high bioconcentration (180) and translocation factors (3.3), fast growth rate and high shoot biomass production. Future studies are needed to test the outcomes of the pot trials in the field. Extensive geochemical studies are needed to identify potential viable agromining locations. Novelty Statement Our research team is a pioneer in the discovery of metal hyperaccumulator plants in Mesoamerica with at least 13 species discovered in the last 2 years. This study is the first to assess the potential of nickel agromining (phytomining) in Mexico (and in all the American continent), using one of the strongest nickel hyperaccumulators reported so far. The promising results of this study are the basis for optimal agricultural management of Blepharidium guatemalense.


Asunto(s)
Níquel , Contaminantes del Suelo , Biodegradación Ambiental , América Central , México , Níquel/análisis , Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA