Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 173: 116341, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428309

RESUMEN

Obesity is a significant risk factor for several chronic diseases. However, pre-menopausal females are protected against high-fat diet (HFD)-induced obesity and its adverse effects. The pregnane X receptor (PXR, NR1I2), a xenobiotic-sensing nuclear receptor, promotes short-term obesity-associated liver disease only in male mice but not in females. Therefore, the current study investigated the metabolic and pathophysiological effects of a long-term 52-week HFD in female wild-type (WT) and PXR-KO mice and characterized the PXR-dependent molecular pathways involved. After 52 weeks of HFD ingestion, the body and liver weights and several markers of hepatotoxicity were significantly higher in WT mice than in their PXR-KO counterparts. The HFD-induced liver injury in WT female mice was also associated with upregulation of the hepatic mRNA levels of peroxisome proliferator-activated receptor gamma (Pparg), its target genes, fat-specific protein 27 (Fsp27), and the liver-specific Fsp27b involved in lipid accumulation, apoptosis, and inflammation. Notably, PXR-KO mice displayed elevated hepatic Cyp2a5 (anti-obesity gene), aldo-keto reductase 1b7 (Akr1b7), glutathione-S-transferase M3 (Gstm3) (antioxidant gene), and AMP-activated protein kinase (AMPK) levels, contributing to protection against long-term HFD-induced obesity and inflammation. RNA sequencing analysis revealed a general blunting of the transcriptomic response to HFD in PXR-KO compared to WT mice. Pathway enrichment analysis demonstrated enrichment by HFD for several pathways, including oxidative stress and redox pathway, cholesterol biosynthesis, and glycolysis/gluconeogenesis in WT but not PXR-KO mice. In conclusion, this study provides new insights into the molecular mechanisms by which PXR deficiency protects against long-term HFD-induced severe obesity and its adverse effects in female mice.


Asunto(s)
Dieta Alta en Grasa , Hígado , Masculino , Femenino , Ratones , Animales , Receptor X de Pregnano/genética , Receptor X de Pregnano/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Aumento de Peso , Obesidad/metabolismo , Inflamación/metabolismo , Ratones Noqueados
2.
Biofactors ; 50(3): 572-591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38183321

RESUMEN

Although obesity and subsequent liver injury are increasingly prevalent in women, female mouse models have generally shown resistance to high-fat diet (HFD)-induced obesity. We evaluated control and HFD-fed male and female FVB/N mice, a strain well-suited to transgenic analyses, for phenotypic, histological, and molecular markers related to control of glucose, lipids, and inflammation in serum, liver, and perigonadal white adipose tissues. Unlike many mouse models, HFD-fed FVB/N females gained more perigonadal and mesenteric fat mass and overall body weight than their male counterparts, with increased hepatic expression of lipogenic PPARγ target genes (Cd36, Fsp27, and Fsp27ß), oxidative stress genes and protein (Nqo1 and CYP2E1), inflammatory gene (Mip-2), and the pro-fibrotic gene Pai-1, along with increases in malondialdehyde and serum ALT levels. Further, inherent to females (independently of HFD), hepatic antioxidant heme oxygenase-1 (HMOX1, HO-1) protein levels were reduced compared to their male counterparts. In contrast, males may have been relatively protected from HFD-induced oxidative stress and liver injury by elevated mRNA and protein levels of hepatic antioxidants BHMT and Gpx2, increased fatty acid oxidation genes in liver and adipocytes (Pparδ), despite disorganized and inflamed adipocytes. Thus, female FVB/N mice offer a valuable preclinical, genetically malleable model that recapitulates many of the features of diet-induced obesity and liver damage observed in human females.


Asunto(s)
Dieta Alta en Grasa , Hemo-Oxigenasa 1 , Inflamación , Hígado , Obesidad , Estrés Oxidativo , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Obesidad/metabolismo , Obesidad/patología , Obesidad/genética , Ratones , Masculino , Hígado/metabolismo , Hígado/patología , Inflamación/metabolismo , Inflamación/patología , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , PPAR gamma/metabolismo , PPAR gamma/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/genética , Antígenos CD36/metabolismo , Antígenos CD36/genética , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de la Membrana , Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...