Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Card Fail ; 29(7): 1017-1028, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36706977

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is life-threatening, and often diagnosed late in its course. We aimed to evaluate if a deep learning approach using electrocardiogram (ECG) data alone can detect PH and clinically important subtypes. We asked: does an automated deep learning approach to ECG interpretation detect PH and its clinically important subtypes? METHODS AND RESULTS: Adults with right heart catheterization or an echocardiogram within 90 days of an ECG at the University of California, San Francisco (2012-2019) were retrospectively identified as PH or non-PH. A deep convolutional neural network was trained on patients' 12-lead ECG voltage data. Patients were divided into training, development, and test sets in a ratio of 7:1:2. Overall, 5016 PH and 19,454 patients without PH were used in the study. The mean age at the time of ECG was 62.29 ± 17.58 years and 49.88% were female. The mean interval between ECG and right heart catheterization or echocardiogram was 3.66 and 2.23 days for patients with PH and patients without PH, respectively. In the test dataset, the model achieved an area under the receiver operating characteristic curve, sensitivity, and specificity, respectively of 0.89, 0.79, and 0.84 to detect PH; 0.91, 0.83, and 0.84 to detect precapillary PH; 0.88, 0.81, and 0.81 to detect pulmonary arterial hypertension, and 0.80, 0.73, and 0.76 to detect group 3 PH. We additionally applied the trained model on ECGs from participants in the test dataset that were obtained from up to 2 years before diagnosis of PH; the area under the receiver operating characteristic curve was 0.79 or greater. CONCLUSIONS: A deep learning ECG algorithm can detect PH and PH subtypes around the time of diagnosis and can detect PH using ECGs that were done up to 2 years before right heart catheterization/echocardiogram diagnosis. This approach has the potential to decrease diagnostic delays in PH.


Asunto(s)
Aprendizaje Profundo , Insuficiencia Cardíaca , Hipertensión Pulmonar , Adulto , Humanos , Femenino , Masculino , Hipertensión Pulmonar/diagnóstico , Estudios Retrospectivos , Electrocardiografía/métodos
2.
Int J Cardiol ; 374: 95-99, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528138

RESUMEN

BACKGROUND: This study aimed to develop a machine learning (ML) model to identify patients who are likely to have pulmonary hypertension (PH), using a large patient-level US-based electronic health record (EHR) database. METHODS: A gradient boosting model, XGBoost, was developed using data from Optum's US-based de-identified EHR dataset (2007-2019). PH and disease control adult patients were identified using diagnostic, treatment and procedure codes and were randomly split into the training (90%) or test set (10%). Model features included patient demographics, physician visits, diagnoses, procedures, prescriptions, and laboratory test results. SHapley Additive exPlanations values were used to determine feature importance. RESULTS: We identified 11,279,478 control and 115,822 PH patients (mean age, respectively: 62 and 68 years, both 53% female). The final model used 165 features, with the most important predictive features including diagnosis of heart failure, shortness of breath and atrial fibrillation. The model predicted PH with an area under the receiver operating characteristic curve (AUROC) of 0.92. AUROC remained above 0.80 for the prediction of PH up to and beyond 18 months before diagnosis. Among the PH patients, we also identified 955 pulmonary arterial hypertension (PAH) and 1432 chronic thromboembolic pulmonary hypertension (CTEPH) patients, and the range of AUROCs obtained for these cohorts was 0.79-0.90 and 0.87-0.96, respectively. CONCLUSIONS: This model to detect PH based on patients' EHR records is viable and performs well in subgroups of PAH and CTEPH patients. This approach has the potential to improve patient outcomes by reducing diagnostic delay in PH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Adulto , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/epidemiología , Registros Electrónicos de Salud , Diagnóstico Tardío , Aprendizaje Automático , Hipertensión Pulmonar Primaria Familiar
4.
Magn Reson Med ; 66(1): 281-9, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21287593

RESUMEN

A 16-channel receive-only, closely fitted array coil is described and tested in vivo for bilateral breast imaging at 3 T. The primary purpose of this coil is to provide high signal-to-noise ratio and parallel imaging acceleration in two directions for breast MRI. Circular coil elements (7.5-cm diameter) were placed on a closed "cup-shaped" platform, and nearest neighbor coils were decoupled through geometric overlap. Comparisons were made between the 16-channel custom coil and a commercially available 8-channel coil. SENSitivity Encoding (SENSE) parallel imaging noise amplification (g-factor) was evaluated in phantom scans. In healthy volunteers, we compared signal-to-noise ratio, parallel imaging in one and two directions, Autocalibrating Reconstruction for Cartesian sampling (ARC) g-factor, and high spatial resolution imaging. When compared with a commercially available 8-channel coil, the 16-channel custom coil shows 3.6× higher mean signal-to-noise ratio in the breast and higher quality accelerated images. In patients, the 16-channel custom coil has facilitated high-quality, high-resolution images with bidirectional acceleration of R = 6.3.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Mama/patología , Femenino , Humanos , Estándares de Referencia , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA