Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Top Dev Biol ; 156: 121-156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556421

RESUMEN

During human embryonic development the early establishment of a functional heart is vital to support the growing fetus. However, forming the embryonic heart is an extremely complex process, requiring spatiotemporally controlled cell specification and differentiation, tissue organization, and coordination of cardiac function. These complexities, in concert with the early and rapid development of the embryonic heart, mean that understanding the intricate interplay between these processes that help shape the early heart remains highly challenging. In this review I focus on recent insights from animal models that have shed new light on the earliest stages of heart development. This includes specification and organization of cardiac progenitors, cell and tissue movements that make and shape the early heart tube, and the initiation of the first beat in the developing heart. In addition I highlight relevant in vitro models that could support translation of findings from animal models to human heart development. Finally I discuss challenges that are being addressed in the field, along with future considerations that together may help move us towards a deeper understanding of how our hearts are made.


Asunto(s)
Corazón , Animales , Diferenciación Celular
2.
Cardiovasc Res ; 118(1): 226-240, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33616638

RESUMEN

AIMS: Vertebrate heart development requires the complex morphogenesis of a linear tube to form the mature organ, a process essential for correct cardiac form and function, requiring coordination of embryonic laterality, cardiac growth, and regionalized cellular changes. While previous studies have demonstrated broad requirements for extracellular matrix (ECM) components in cardiac morphogenesis, we hypothesized that ECM regionalization may fine tune cardiac shape during heart development. METHODS AND RESULTS: Using live in vivo light sheet imaging of zebrafish embryos, we describe a left-sided expansion of the ECM between the myocardium and endocardium prior to the onset of heart looping and chamber ballooning. Analysis using an ECM sensor revealed the cardiac ECM is further regionalized along the atrioventricular axis. Spatial transcriptomic analysis of gene expression in the heart tube identified candidate genes that may drive ECM expansion. This approach identified regionalized expression of hapln1a, encoding an ECM cross-linking protein. Validation of transcriptomic data by in situ hybridization confirmed regionalized hapln1a expression in the heart, with highest levels of expression in the future atrium and on the left side of the tube, overlapping with the observed ECM expansion. Analysis of CRISPR-Cas9-generated hapln1a mutants revealed a reduction in atrial size and reduced chamber ballooning. Loss-of-function analysis demonstrated that ECM expansion is dependent upon Hapln1a, together supporting a role for Hapln1a in regionalized ECM modulation and cardiac morphogenesis. Analysis of hapln1a expression in zebrafish mutants with randomized or absent embryonic left-right asymmetry revealed that laterality cues position hapln1a-expressing cells asymmetrically in the left side of the heart tube. CONCLUSION: We identify a regionalized ECM expansion in the heart tube which promotes correct heart development, and propose a novel model whereby embryonic laterality cues orient the axis of ECM asymmetry in the heart, suggesting these two pathways interact to promote robust cardiac morphogenesis.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Corazón/embriología , Morfogénesis , Miocardio/metabolismo , Proteoglicanos/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/genética , Regulación del Desarrollo de la Expresión Génica , Ácido Hialurónico/metabolismo , Mutación , Proteoglicanos/genética , Transducción de Señal , Transcriptoma , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
3.
Br J Pharmacol ; 179(5): 900-917, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33788282

RESUMEN

Mammalian models including non-human primates, pigs and rodents have been used extensively to study the mechanisms of cardiovascular disease. However, there is an increasing desire for alternative model systems that provide excellent scientific value while replacing or reducing the use of mammals. Here, we review the use of zebrafish, Danio rerio, to study cardiovascular development and disease. The anatomy and physiology of zebrafish and mammalian cardiovascular systems are compared, and we describe the use of zebrafish models in studying the mechanisms of cardiac (e.g. congenital heart defects, cardiomyopathy, conduction disorders and regeneration) and vascular (endothelial dysfunction and atherosclerosis, lipid metabolism, vascular ageing, neurovascular physiology and stroke) pathologies. We also review the use of zebrafish for studying pharmacological responses to cardiovascular drugs and describe several features of zebrafish that make them a compelling model for in vivo screening of compounds for the treatment cardiovascular disease. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.


Asunto(s)
Fármacos Cardiovasculares , Enfermedades Cardiovasculares , Accidente Cerebrovascular , Envejecimiento , Animales , Fármacos Cardiovasculares/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Humanos , Mamíferos , Porcinos , Pez Cebra
4.
Development ; 148(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34568948

RESUMEN

During early vertebrate heart development, the heart transitions from a linear tube to a complex asymmetric structure, a morphogenetic process that occurs simultaneously with growth of the heart. Cardiac growth during early heart morphogenesis is driven by deployment of cells from the second heart field (SHF) into both poles of the heart. Laminin is a core component of the extracellular matrix and, although mutations in laminin subunits are linked with cardiac abnormalities, no role for laminin has been identified in early vertebrate heart morphogenesis. We identified tissue-specific expression of laminin genes in the developing zebrafish heart, supporting a role for laminins in heart morphogenesis. Analysis of heart development in lamb1a zebrafish mutant embryos reveals mild morphogenetic defects and progressive cardiomegaly, and that Lamb1a functions to limit heart size during cardiac development by restricting SHF addition. lamb1a mutants exhibit hallmarks of altered haemodynamics, and blocking cardiac contractility in lamb1a mutants rescues heart size and atrial SHF addition. Together, these results suggest that laminin mediates interactions between SHF deployment and cardiac biomechanics during heart morphogenesis and growth in the developing embryo.


Asunto(s)
Atrios Cardíacos/metabolismo , Corazón/fisiología , Laminina/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Linaje de la Célula/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Cardiopatías Congénitas/metabolismo , Morfogénesis/fisiología , Miocardio/metabolismo , Organogénesis/fisiología
5.
Development ; 148(5)2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674261

RESUMEN

The developing heart is formed of two tissue layers separated by an extracellular matrix (ECM) that provides chemical and physical signals to cardiac cells. While deposition of specific ECM components creates matrix diversity, the cardiac ECM is also dynamic, with modification and degradation playing important roles in ECM maturation and function. In this Review, we discuss the spatiotemporal changes in ECM composition during cardiac development that support distinct aspects of heart morphogenesis. We highlight conserved requirements for specific ECM components in human cardiac development, and discuss emerging evidence of a central role for the ECM in promoting heart regeneration.


Asunto(s)
Matriz Extracelular/metabolismo , Corazón/crecimiento & desarrollo , Animales , Proteínas de la Matriz Extracelular/metabolismo , Corazón/fisiología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Humanos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Organogénesis , Pericardio/metabolismo , Regeneración
7.
Elife ; 62017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29179812

RESUMEN

Computational modelling of the heart tube during development reveals the interplay between tissue asymmetry and growth that helps our hearts take shape.


Asunto(s)
Tipificación del Cuerpo , Imagenología Tridimensional , Animales , Desarrollo Embrionario , Corazón , Ratones , Morfogénesis , Organogénesis
8.
Dev Cell ; 36(1): 36-49, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26748692

RESUMEN

In contrast to mammals, zebrafish regenerate heart injuries via proliferation of cardiomyocytes located near the wound border. To identify regulators of cardiomyocyte proliferation, we used spatially resolved RNA sequencing (tomo-seq) and generated a high-resolution genome-wide atlas of gene expression in the regenerating zebrafish heart. Interestingly, we identified two wound border zones with distinct expression profiles, including the re-expression of embryonic cardiac genes and targets of bone morphogenetic protein (BMP) signaling. Endogenous BMP signaling has been reported to be detrimental to mammalian cardiac repair. In contrast, we find that genetic or chemical inhibition of BMP signaling in zebrafish reduces cardiomyocyte dedifferentiation and proliferation, ultimately compromising myocardial regeneration, while bmp2b overexpression is sufficient to enhance it. Our results provide a resource for further studies on the molecular regulation of cardiac regeneration and reveal intriguing differential cellular responses of cardiomyocytes to a conserved signaling pathway in regenerative versus non-regenerative hearts.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Regulación de la Expresión Génica/genética , Genoma/genética , Miocitos Cardíacos/metabolismo , Regeneración/fisiología , Transducción de Señal/genética , Pez Cebra/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Proliferación Celular/genética , Miocitos Cardíacos/citología , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
Hum Mutat ; 37(2): 194-200, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26531781

RESUMEN

Establishing correct left-right asymmetry during embryonic development is crucial for proper asymmetric positioning of the organs. Congenital heart defects, such as dextrocardia, transposition of the arteries, and inflow or outflow tract malformations, comprise some of the most common birth defects and may be attributed to incorrect establishment of body laterality. Here, we identify new patients with dextrocardia who have mutations in CFAP53, a coiled-coil domain containing protein. To elucidate the mechanism by which CFAP53 regulates embryonic asymmetry, we used genome editing to generate cfap53 zebrafish mutants. Zebrafish cfap53 mutants have specific defects in organ laterality and randomization of asymmetric gene expression. We show that cfap53 is required for cilia rotation specifically in Kupffer's vesicle, the zebrafish laterality organ, providing a mechanism by which patients with CFAP53 mutations develop dextrocardia and heterotaxy, and confirming previous evidence that left-right asymmetry in humans is regulated through cilia-driven fluid flow in a laterality organ.


Asunto(s)
Proteínas del Citoesqueleto/genética , Dextrocardia/genética , Síndrome de Heterotaxia/genética , Mutación , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Secuencia de Bases , Tipificación del Cuerpo/genética , Cilios/metabolismo , Cilios/patología , Secuencia Conservada , Proteínas del Citoesqueleto/metabolismo , Análisis Mutacional de ADN , Dextrocardia/metabolismo , Dextrocardia/patología , Embrión no Mamífero , Desarrollo Embrionario/genética , Femenino , Expresión Génica , Síndrome de Heterotaxia/metabolismo , Síndrome de Heterotaxia/patología , Humanos , Sistema de la Línea Lateral/embriología , Sistema de la Línea Lateral/metabolismo , Masculino , Datos de Secuencia Molecular , Linaje , Hermanos , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
10.
Dev Cell ; 32(5): 631-9, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25684355

RESUMEN

Tissue patterning is established by extracellular growth factors or morphogens. Although different theoretical models explaining specific patterns have been proposed, our understanding of tissue pattern establishment in vivo remains limited. In many animal species, left-right patterning is governed by a reaction-diffusion system relying on the different diffusivity of an activator, Nodal, and an inhibitor, Lefty. In a genetic screen, we identified a zebrafish loss-of-function mutant for the proprotein convertase FurinA. Embryological and biochemical experiments demonstrate that cleavage of the Nodal-related Spaw proprotein into a mature form by FurinA is required for Spaw gradient formation and activation of Nodal signaling. We demonstrate that FurinA is required cell-autonomously for the long-range signaling activity of Spaw and no other Nodal-related factors. Combined in silico and in vivo approaches support a model in which FurinA controls the signaling range of Spaw by cleaving its proprotein into a mature, extracellular form, consequently regulating left-right patterning.


Asunto(s)
Factores de Determinación Derecha-Izquierda/metabolismo , Proteína Nodal/metabolismo , Proproteína Convertasas/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Tipificación del Cuerpo/fisiología , Técnica del Anticuerpo Fluorescente , Hibridación in Situ , Mesodermo/citología , Mesodermo/metabolismo , Datos de Secuencia Molecular , ARN Mensajero/genética , Homología de Secuencia de Aminoácido
11.
Cell ; 159(3): 662-75, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25417113

RESUMEN

Advancing our understanding of embryonic development is heavily dependent on identification of novel pathways or regulators. Although genome-wide techniques such as RNA sequencing are ideally suited for discovering novel candidate genes, they are unable to yield spatially resolved information in embryos or tissues. Microscopy-based approaches, using in situ hybridization, for example, can provide spatial information about gene expression, but are limited to analyzing one or a few genes at a time. Here, we present a method where we combine traditional histological techniques with low-input RNA sequencing and mathematical image reconstruction to generate a high-resolution genome-wide 3D atlas of gene expression in the zebrafish embryo at three developmental stages. Importantly, our technique enables searching for genes that are expressed in specific spatial patterns without manual image annotation. We envision broad applicability of RNA tomography as an accurate and sensitive approach for spatially resolved transcriptomics in whole embryos and dissected organs.


Asunto(s)
Embrión no Mamífero/metabolismo , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Tomografía/métodos , Pez Cebra/embriología , Animales , Imagenología Tridimensional
12.
Nat Commun ; 4: 2754, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24212328

RESUMEN

Breaking left-right symmetry in bilateria is a major event during embryo development that is required for asymmetric organ position, directional organ looping and lateralized organ function in the adult. Asymmetric expression of Nodal-related genes is hypothesized to be the driving force behind regulation of organ laterality. Here we identify a Nodal-independent mechanism that drives asymmetric heart looping in zebrafish embryos. In a unique mutant defective for the Nodal-related southpaw gene, preferential dextral looping in the heart is maintained, whereas gut and brain asymmetries are randomized. As genetic and pharmacological inhibition of Nodal signalling does not abolish heart asymmetry, a yet undiscovered mechanism controls heart chirality. This mechanism is tissue intrinsic, as explanted hearts maintain ex vivo retain chiral looping behaviour and require actin polymerization and myosin II activity. We find that Nodal signalling regulates actin gene expression, supporting a model in which Nodal signalling amplifies this tissue-intrinsic mechanism of heart looping.


Asunto(s)
Tipificación del Cuerpo/fisiología , Embrión no Mamífero/anatomía & histología , Regulación del Desarrollo de la Expresión Génica/fisiología , Corazón/embriología , Proteína Nodal/metabolismo , Pez Cebra/embriología , Actinas/fisiología , Actomiosina/fisiología , Animales , Embrión no Mamífero/fisiología , Mutación , Proteína Nodal/genética , Transducción de Señal/fisiología
13.
Methods Cell Biol ; 104: 401-28, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21924175

RESUMEN

The generation of complex organisms requires that an initial population of cells with identical gene expression profiles can adopt different cell fates during development by progressively diverging transcriptional programs. These programs depend on the binding of transcritional regulators to specific genomic sites, which in turn is controlled by modifications of the chromatin. Chromatin modifications may occur directly upon DNA by methylation of specific nucleotides, or may involve post-translational modification of histones. Local regulation of histone post-translational modifications regionalizes the genome into euchromatic regions, which are more accessible to DNA-binding factors, and condensed heterochromatic regions, inhibiting the binding of such factors. In addition, these modifications may be required in a genome-wide fashion for processes such as DNA replication or chromosome condensation. From an embryologist's point of view chromatin modifications are intensively studied in the context of imprinting and have more recently received increasing attention in understanding the basis of pluripotency and cellular differentiation. Here, we describe recently uncovered roles of chromatin modifications in zebrafish development and regeneration, as well as available resources and commonly used techniques. We provide a general introduction into chromatin modifications and their respective functions with a focus on gene transcription, as well as key aspects of their roles in the early zebrafish embryo, neural development, formation of the digestive system and tissue regeneration.


Asunto(s)
Ensamble y Desensamble de Cromatina , Regulación del Desarrollo de la Expresión Génica , Pez Cebra/crecimiento & desarrollo , Acetilación , Animales , Tipificación del Cuerpo/genética , Inmunoprecipitación de Cromatina , Metilación de ADN , Sistema Digestivo/crecimiento & desarrollo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Histona Acetiltransferasas/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Mutación , Sistema Nervioso/crecimiento & desarrollo , Regeneración/genética , Análisis de Secuencia de ADN/métodos , Transcripción Genética , Pez Cebra/genética , Pez Cebra/metabolismo , Cigoto/crecimiento & desarrollo
14.
Gene Expr Patterns ; 10(6): 237-43, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20471496

RESUMEN

Members of the Albumin/alpha-Fetoprotein/Afamin/Group specific component (Alb/Afp/Afm/Gc) multi-gene family perform physiological functions essential for body homeostasis and are among the earliest genes to be expressed in the fetal liver in mammals. A comprehensive search of the zebrafish genome has led to the isolation of a single member of this gene family, exhibiting close homology to group specific component (gc; also described as vitamin D binding protein (dbp)). Our phylogenetic analyses did not uncover albumin in the genome, indicating its likely absence in zebrafish, whereas the absence of afp and afm is in agreement with previous findings that both genes arose at a later stage of vertebrate evolution. gc mRNA expression is initiated weakly around 55 hours post fertilisation (hpf) in the developing liver, and increases until it reaches a continuously high level from about 72 hpf onwards. Investigation of gc mRNA in hdac1 mutants revealed a severe delay of expression, indicating a defect in progression of hepatic differentiation. This provides further evidence for Hdac1 regulating the precise timely execution of hepatic gene expression programmes. Conversely, onset of gc expression was unaltered in cloche mutant embryos, which lack hepatic vasculature, suggesting that this particular step of hepatic differentiation occurs independently from endothelial cells. Our studies identify gc as the likely only member of the Alb/Afp/Afm/Gc gene family in zebrafish, providing important insights into the evolution of this multi-gene family in vertebrates. Furthermore, the identification of gc adds a valuable temporal marker for investigating progressive hepatic differentiation in zebrafish.


Asunto(s)
Albúminas/genética , Hígado/embriología , Proteína de Unión a Vitamina D/genética , Pez Cebra/embriología , alfa-Fetoproteínas/genética , Albúminas/análisis , Albúminas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Embrión no Mamífero , Perfilación de la Expresión Génica , Hígado/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Homología de Secuencia de Aminoácido , Albúmina Sérica/análisis , Albúmina Sérica/genética , Albúmina Sérica/metabolismo , Proteína de Unión a Vitamina D/análisis , Proteína de Unión a Vitamina D/metabolismo , Pez Cebra/genética , alfa-Fetoproteínas/análisis , alfa-Fetoproteínas/metabolismo
15.
Dev Biol ; 322(2): 237-50, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18687323

RESUMEN

Liver, pancreas and lung originate from the presumptive foregut in temporal and spatial proximity. This requires precisely orchestrated transcriptional activation and repression of organ-specific gene expression within the same cell. Here, we show distinct roles for the chromatin remodelling factor and transcriptional repressor Histone deacetylase 1 (Hdac1) in endodermal organogenesis in zebrafish. Loss of Hdac1 causes defects in timely liver specification and in subsequent differentiation. Mosaic analyses reveal a cell-autonomous requirement for hdac1 within the hepatic endoderm. Our studies further reveal specific functions for Hdac1 in pancreas development. Loss of hdac1 causes the formation of ectopic endocrine clusters anteriorly to the main islet, as well as defects in exocrine pancreas specification and differentiation. In addition, we observe defects in extrahepatopancreatic duct formation and morphogenesis. Finally, loss of hdac1 results in an expansion of the foregut endoderm in the domain from which the liver and pancreas originate. Our genetic studies demonstrate that Hdac1 is crucial for regulating distinct steps in endodermal organogenesis. This suggests a model in which Hdac1 may directly or indirectly restrict foregut fates while promoting hepatic and exocrine pancreatic specification and differentiation, as well as pancreatic endocrine islet morphogenesis. These findings establish zebrafish as a tractable system to investigate chromatin remodelling factor functions in controlling gene expression programmes in vertebrate endodermal organogenesis.


Asunto(s)
Histona Desacetilasas/metabolismo , Hígado/embriología , Páncreas/embriología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Diferenciación Celular/fisiología , Proliferación Celular , Endodermo/embriología , Hepatocitos/citología , Hepatocitos/fisiología , Histona Desacetilasa 1 , Histona Desacetilasas/genética , Hígado/enzimología , Pulmón/embriología , Pulmón/enzimología , Datos de Secuencia Molecular , Mutación , Especificidad de Órganos , Páncreas/enzimología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...