Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 113: 8-19, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29454949

RESUMEN

Iron-carboxylate (MIL-100(Fe)) and HKUST-1 (Cu3(BTC)2, BTC=1,3,5-benzenetricarboxylic acid) as nanoporous metal organic framework supports were compared for immobilization of porcine pancreatic lipase (PPL). These immobilizations improved thermal, pH and operational stability of PPL compared to the soluble enzyme. Stability of MIL-100(Fe) was better than HKUST-1 as support. MIL-100(Fe) encapsulated Keggin phosphotungstic acid H3PW12O40 (PW) (PW@MIL-100(Fe)) was synthesized to develop novel enzyme immobilized system and characterized by Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD) and Barrett Joyner Halenda (BJH) analysis. Relative activity for immobilized lipase on PW@MIL-100(Fe) was more than MIL-100(Fe) in pH range of 3-9. At the elevated temperature of 70°C, the PW@MIL-100(Fe) was the most stable one. PW@MIL-100(Fe)/PPL substrate exhibited the higher stability at 4°C and 25°C, along with other supports. Moreover, PW@MIL-100(Fe) was chosen as the best support for immobilization of PPL and was also applied for the synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid. The immobilized enzyme retained 90.4% of its initial activity during synthesis of benzyl cinnamate after 5 successive catalytic rounds and reached 80.0% yield after 8 reuses.


Asunto(s)
Compuestos de Bencilo/química , Compuestos de Bencilo/síntesis química , Biocatálisis , Cinamatos/química , Cinamatos/síntesis química , Lipasa/química , Lipasa/metabolismo , Estructuras Metalorgánicas/química , Compuestos de Tungsteno/química , Técnicas de Química Sintética , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Esterificación , Tecnología Química Verde , Concentración de Iones de Hidrógeno , Temperatura
2.
Acta Chim Slov ; 63(2): 309-16, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27333553

RESUMEN

Hybrid composite material was obtained through encapsulation of H3PW12O40 (PW) into HKUST-1 (Cu3(BTC)2, BTC = 1,3,5-benzenetricarboxylic acid), in molar composition of 5 Cu(NO3)2 · 3H2O/2.8 BTC/0.3 PW/0.6 CTAB by adding solutions of PW and copper salts to mixture of BTC and surfactant. The catalyst was characterized by various techniques including powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), laser particle size analyzer, Brunauer Emmett-Teller (BET). The acidity of the catalyst was measured by a potentiometric titration with n-butylamine and PW/HKUST-1 presented very strong acidic sites with Ei > 100 mV. This nano catalyst was successfully used for the synthesis of various ß-keto enol ethers at 45 °C with 51-98% yield after 5-75 min. The catalyst was easily recycled and reused at least four times without significant loss of its activity (94% yield after forth run). The presence of the PW in PW/HKUST-1 and reused PW/HKUST-1 structure, eliminating any doubt about collapse of the HKUST-1 after catalytic reaction and can be followed by FT-IR, XRD and SEM techniques. Brönsted and Lewis acidity of the PW/HKUST-1 catalyst was distinguished by studying the FT-IR and determined by chemisorption of pyridine. The strength and dispersion of the protons on PW/HKUST-1 was considerably high and active surface protons became more available for reactant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA