Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 29(5): 1265-1280, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38228889

RESUMEN

Early and progressive dysfunctions of the dopaminergic system from the Ventral Tegmental Area (VTA) have been described in Alzheimer's Disease (AD). During the long pre-symptomatic phase, alterations in the function of Parvalbumin interneurons (PV-INs) are also observed, resulting in cortical hyperexcitability represented by subclinical epilepsy and aberrant gamma-oscillations. However, it is unknown whether the dopaminergic deficits contribute to brain hyperexcitability in AD. Here, using the Tg2576 mouse model of AD, we prove that reduced hippocampal dopaminergic innervation, due to VTA dopamine neuron degeneration, impairs PV-IN firing and gamma-waves, weakens the inhibition of pyramidal neurons and induces hippocampal hyperexcitability via lower D2-receptor-mediated activation of the CREB-pathway. These alterations coincide with reduced PV-IN numbers and Perineuronal Net density. Importantly, L-DOPA and the selective D2-receptor agonist quinpirole rescue p-CREB levels and improve the PV-IN-mediated inhibition, thus reducing hyperexcitability. Moreover, similarly to quinpirole, sumanirole - another D2-receptor agonist and a known anticonvulsant - not only increases p-CREB levels in PV-INs but also restores gamma-oscillations in Tg2576 mice. Conversely, blocking the dopaminergic transmission with sulpiride (a D2-like receptor antagonist) in WT mice reduces p-CREB levels in PV-INs, mimicking what occurs in Tg2576. Overall, these findings support the hypothesis that the VTA dopaminergic system integrity plays a key role in hippocampal PV-IN function and survival, disclosing a relevant contribution of the reduced dopaminergic tone to aberrant gamma-waves, hippocampal hyperexcitability and epileptiform activity in early AD.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Hipocampo , Interneuronas , Ratones Transgénicos , Área Tegmental Ventral , Animales , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/fisiopatología , Hipocampo/metabolismo , Hipocampo/fisiopatología , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/patología , Neuronas Dopaminérgicas/metabolismo , Interneuronas/metabolismo , Interneuronas/fisiología , Parvalbúminas/metabolismo , Dopamina/metabolismo , Receptores de Dopamina D2/metabolismo , Masculino , Células Piramidales/metabolismo , Levodopa/farmacología , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Degeneración Nerviosa/metabolismo , Quinpirol/farmacología , Ritmo Gamma/fisiología , Ratones Endogámicos C57BL
2.
Ageing Res Rev ; 87: 101907, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36893920

RESUMEN

In the Central Nervous System (CNS), neuroinflammation orchestrated by microglia and astrocytes is an innate immune response to counteract stressful and dangerous insults. One of the most important and best characterized players in the neuroinflammatory response is the NLRP3 inflammasome, a multiproteic complex composed by NOD-like receptor family Pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and pro-caspase-1. Different stimuli mediate NLRP3 activation, resulting in the NLRP3 inflammasome assembly and the pro-inflammatory cytokine (IL-1ß and IL-18) maturation and secretion. The persistent and uncontrolled NLRP3 inflammasome activation has a leading role during the pathophysiology of neuroinflammation in age-related neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD). The neurotransmitter dopamine (DA) is one of the players that negatively modulate NLRP3 inflammasome activation through DA receptors expressed in both microglia and astrocytes. This review summarizes recent findings linking the role of DA in the modulation of NLRP3-mediated neuroinflammation in PD and AD, where early deficits of the dopaminergic system are well characterized. Highlighting the relationship between DA, its glial receptors and the NLRP3-mediated neuroinflammation can provide insights to novel diagnostic strategies in early disease phases and new pharmacological tools to delay the progression of these diseases.


Asunto(s)
Inflamasomas , Enfermedades Neurodegenerativas , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Dopamina/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neuroinflamatorias , Microglía/metabolismo
3.
Transl Psychiatry ; 13(1): 63, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36804922

RESUMEN

Female, but not male, mice with haploinsufficiency for the proautophagic Ambra1 gene show an autistic-like phenotype associated with hippocampal circuits dysfunctions which include loss of parvalbuminergic interneurons (PV-IN), decrease in the inhibition/excitation ratio, and abundance of immature dendritic spines on CA1 pyramidal neurons. Given the paucity of data relating to female autism, we exploit the Ambra1+/- female model to investigate whether rectifying the inhibitory input onto hippocampal principal neurons (PN) rescues their ASD-like phenotype at both the systems and circuits level. Moreover, being the autistic phenotype exclusively observed in the female mice, we control the effect of the mutation and treatment on hippocampal expression of estrogen receptors (ER). Here we show that excitatory DREADDs injected in PV_Cre Ambra1+/- females augment the inhibitory input onto CA1 principal neurons (PN), rescue their social and attentional impairments, and normalize dendritic spine abnormalities and ER expression in the hippocampus. By providing the first evidence that hippocampal excitability jointly controls autistic-like traits and ER in a model of female autism, our findings identify an autophagy deficiency-related mechanism of hippocampal neural and hormonal dysregulation which opens novel perspectives for treatments specifically designed for autistic females.


Asunto(s)
Trastorno Autístico , Región CA1 Hipocampal , Femenino , Ratones , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Receptores de Estrógenos/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Células Piramidales/metabolismo , Interneuronas/metabolismo , Fenotipo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
4.
Mov Disord ; 38(2): 256-266, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36350188

RESUMEN

BACKGROUND: The accumulation of α-synuclein (α-syn) fibrils in intraneuronal inclusions called Lewy bodies and Lewy neurites is a pathological signature of Parkinson's disease (PD). Although several aspects linked to α-syn-dependent pathology (concerning its spreading, aggregation, and activation of inflammatory and neurodegenerative processes) have been under intense investigation, less attention has been devoted to the real impact of α-syn overexpression on structural and functional properties of substantia nigra pars compacta (SNpc) dopamine (DA) neurons, particularly at tardive stages of α-syn buildup, despite this has obvious relevance to comprehending mechanisms beyond PD progression. OBJECTIVES: We aimed to determine the consequences of a prolonged α-syn overexpression on somatodendritic morphology and functions of SNpc DA neurons. METHODS: We performed immunohistochemistry, stereological DA cell counts, analyses of dendritic arborization, ex vivo patch-clamp recordings, and in vivo DA microdialysis measurements in a 12- to 13-month-old transgenic rat model overexpressing the full-length human α-syn (Snca+/+ ) and age-matched wild-type rats. RESULTS: Aged Snca+/+ rats have mild loss of SNpc DA neurons and decreased basal DA levels in the SN. Residual nigral DA neurons display smaller soma and compromised dendritic arborization and, in parallel, increased firing activity, switch in firing mode, and hyperexcitability associated with hypofunction of fast activating/inactivating voltage-gated K+ channels and Ca2+ - and voltage-activated large conductance K+ channels. These intrinsic currents underlie the repolarization/afterhyperpolarization phase of action potentials, thus affecting neuronal excitability. CONCLUSIONS: Besides clarifying α-syn-induced pathological landmarks, such evidence reveals compensatory functional mechanisms that nigral DA neurons could adopt during PD progression to counteract neurodegeneration. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Ratas , Humanos , Animales , Anciano , Lactante , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Neuronas Dopaminérgicas/metabolismo , Sustancia Negra/metabolismo , Porción Compacta de la Sustancia Negra/metabolismo , Ratas Transgénicas
6.
Mol Neurodegener ; 17(1): 76, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434727

RESUMEN

BACKGROUND: Recent clinical and experimental studies have highlighted the involvement of Ventral Tegmental Area (VTA) dopamine (DA) neurons for the early pathogenesis of Alzheimer's Disease (AD). We have previously described a progressive and selective degeneration of these neurons in the Tg2576 mouse model of AD, long before amyloid-beta plaque formation. The degenerative process in DA neurons is associated with an autophagy flux impairment, whose rescue can prevent neuronal loss. Impairments in autophagy can be the basis for accumulation of damaged mitochondria, leading to disturbance in calcium (Ca2+) homeostasis, and to functional and structural deterioration of DA neurons. METHODS: In Tg2576 mice, we performed amperometric recordings of DA levels and analysis of dopaminergic fibers in the Nucleus Accumbens - a major component of the ventral striatum precociously affected in AD patients - together with retrograde tracing, to identify the most vulnerable DA neuron subpopulations in the VTA. Then, we focused on these neurons to analyze mitochondrial integrity and Apoptosis-inducing factor (AIF) localization by electron and confocal microscopy, respectively. Stereological cell count was also used to evaluate degeneration of DA neuron subpopulations containing the Ca2+-binding proteins Calbindin-D28K and Calretinin. The expression levels for these proteins were analyzed by western blot and confocal microscopy. Lastly, using electrophysiology and microfluorometry we analyzed VTA DA neuron intrinsic properties and cytosolic free Ca2+ levels. RESULTS: We found a progressive degeneration of mesolimbic DA neurons projecting to the ventral striatum, located in the paranigral nucleus and parabrachial pigmented subnucleus of the VTA. At the onset of degeneration (3 months of age), the vulnerable DA neurons in the Tg2576 accumulate damaged mitochondria, while AIF translocates from the mitochondria to the nucleus. Although we describe an age-dependent loss of the DA neurons expressing Calbindin-D28K or Calretinin, we observed that the remaining cells upregulate the levels of Ca2+-binding proteins, and the free cytosolic levels of Ca2+ in these neurons are significantly decreased. Coherently, TUNEL-stained Tg2576 DA neurons express lower levels of Calbindin-D28K when compared with non-apoptotic cells. CONCLUSION: Overall, our results suggest that the overexpression of Ca2+-binding proteins in VTA DA neurons might be an attempt of cells to survive by increasing their ability to buffer free Ca2+. Exploring strategies to overexpress Ca2+-binding proteins could be fundamental to reduce neuronal suffering and improve cognitive and non-cognitive functions in AD.


Asunto(s)
Enfermedad de Alzheimer , Área Tegmental Ventral , Ratones , Animales , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/patología , Neuronas Dopaminérgicas/metabolismo , Dopamina/metabolismo , Calbindina 2/metabolismo , Enfermedad de Alzheimer/metabolismo , Regulación hacia Arriba , Proteínas Portadoras/metabolismo , Calbindina 1/metabolismo
8.
Cell Death Dis ; 13(4): 381, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35444186

RESUMEN

The pathogenic mechanisms that underlie the progression of remote degeneration after spinal cord injury (SCI) are not fully understood. In this study, we examined the relationship between endoplasmic reticulum (ER) stress and macroautophagy, hereafter autophagy, and its contribution to the secondary damage and outcomes that are associated with remote degeneration after SCI. Using a rat model of spinal cord hemisection at the cervical level, we measured ER stress and autophagy markers in the axotomized neurons of the red nucleus (RN). In SCI animals, mRNA and protein levels of markers of ER stress, such as GRP78, CHOP, and GADD34, increased 1 day after the injury, peaking on Day 5. Notably, in SCI animals, the increase of ER stress markers correlated with a blockade in autophagic flux, as evidenced by the increase in microtubule-associated protein 2 light chain 3 (LC3-II) and p62/SQSTM1 (p62) and the decline in LAMP1 and LAMP2 levels. After injury, treatment with guanabenz protected neurons from UPR failure and increased lysosomes biogenesis, unblocking autophagic flux. These effects correlated with greater activation of TFEB and improved neuronal survival and functional recovery-effects that persisted after suspension of the treatment. Collectively, our results demonstrate that in remote secondary damage, impairments in autophagic flux are intertwined with ER stress, an association that contributes to the apoptotic cell death and functional damage that are observed after SCI.


Asunto(s)
Autofagosomas , Traumatismos de la Médula Espinal , Animales , Apoptosis , Autofagosomas/metabolismo , Autofagia , Estrés del Retículo Endoplásmico , Proteostasis , Ratas , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología
9.
Exp Neurol ; 350: 113969, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34973962

RESUMEN

Gradual decline in cognitive and non-cognitive functions are considered clinical hallmarks of Alzheimer's Disease (AD). Post-mortem autoptic analysis shows the presence of amyloid ß deposits, neuroinflammation and severe brain atrophy. However, brain circuit alterations and cellular derailments, assessed in very early stages of AD, still remain elusive. The understanding of these early alterations is crucial to tackle defective mechanisms. In a previous study we proved that the Tg2576 mouse model of AD displays functional deficits in the dorsal hippocampus and relevant behavioural AD-related alterations. We had shown that these deficits in Tg2576 mice correlate with the precocious degeneration of dopamine (DA) neurons in the Ventral Tegmental Area (VTA) and can be restored by L-DOPA treatment. Due to the distinct functionality and connectivity of dorsal versus ventral hippocampus, here we investigated neuronal excitability and synaptic functionality in the ventral CA1 hippocampal sub-region of Tg2576 mice. We found an age-dependent alteration of cell excitability and firing in pyramidal neurons starting at 3 months of age, that correlates with reduced levels in the ventral CA1 of tyrosine hydroxylase - the rate-limiting enzyme of DA synthesis. Additionally, at odds with the dorsal hippocampus, we found no alterations in basal glutamatergic transmission and long-term plasticity of ventral neurons in 8-month old Tg2576 mice compared to age-matched controls. Last, we used computational analysis to model the early derailments of firing properties observed and hypothesize that the neuronal alterations found could depend on dysfunctional sodium and potassium conductances, leading to anticipated depolarization-block of action potential firing. The present study depicts that impairment of cell excitability and homeostatic control of firing in ventral CA1 pyramidal neurons is a prodromal feature in Tg2576 AD mice.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Región CA1 Hipocampal/fisiopatología , Fenómenos Electrofisiológicos , Células Piramidales , Potenciales de Acción , Envejecimiento , Animales , Dopaminérgicos/farmacología , Neuronas Dopaminérgicas , Femenino , Levodopa/farmacología , Masculino , Ratones , Ratones Transgénicos , Canales de Potasio , Canales de Sodio , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/fisiopatología
10.
Autophagy ; 17(5): 1278-1280, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33779492

RESUMEN

Alzheimer disease (AD) is a neurodegenerative disorder for which no approved medication exists. AD is characterized by worsening cognitive and non-cognitive symptoms, and research in the AD field strives to identify very precocious brain alterations leading to an irreversible condition. Recently it has been demonstrated that several early AD symptoms are paralleled with degeneration of neurons producing dopamine (DA), a neurotransmitter involved in the regulation of cognitive and non-cognitive functions. Actually, we found that ventral tegmental area (VTA) DA neurons degenerate early in a validated AD mouse model (Tg2576). Here, we summarize new data showing how macroautophagy/autophagy impairment - due to enhanced activity of the ABL/c-Abl kinase - might cause the DA neuron loss. We also proved that nilotinib, an ABL inhibitor, restores autophagy flux, thus preventing VTA neurodegeneration. Most notably, from a clinical point of view, nilotinib, by preventing DA neuronal loss, preserves DA outflow in VTA-projecting areas, improving Tg2576 behavioral phenotypes. Our findings shed light on the mechanism involved in DA neurodegeneration, revealing that autophagy represents a viable therapeutic target in early AD.


Asunto(s)
Enfermedad de Alzheimer , Neuronas Dopaminérgicas , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Autofagia , Dopamina , Ratones , Pirimidinas
11.
Prog Neurobiol ; 202: 102031, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33684513

RESUMEN

What happens precociously to the brain destined to develop Alzheimer's Disease (AD) still remains to be elucidated and this is one reason why effective AD treatments are missing. Recent experimental and clinical studies indicate that the degeneration of the dopaminergic (DA) neurons in the Ventral Tegmental Area (VTA) could be one of the first events occurring in AD. However, the causes of the increased vulnerability of DA neurons in AD are missing. Here, we deeply investigate the physiology of DA neurons in the VTA before, at the onset, and after onset of VTA neurodegeneration. We use the Tg2576 mouse model of AD, overexpressing a mutated form of the human APP, to identify molecular targets that can be manipulated pharmacologically. We show that in Tg2576 mice, DA neurons of the VTA at the onset of degeneration undergo slight but functionally relevant changes in their electrophysiological properties and cell morphology. Importantly, these changes are associated with accumulation of autophagosomes, suggestive of a dysfunctional autophagy, and with enhanced activation of c-Abl, a tyrosine kinase previously implicated in the pathogenesis of neurodegenerative diseases. Chronic treatment of Tg2576 mice with Nilotinib, a validated c-Abl inhibitor, reduces c-Abl phosphorylation, improves autophagy, reduces Aß levels and - more importantly - prevents degeneration as well as functional and morphological alterations in DA neurons of the VTA. Interestingly, the drug prevents the reduction of DA outflow to the hippocampus and ameliorates hippocampal-related cognitive functions. Our results strive to identify early pathological brain changes in AD, to provide a rational basis for new therapeutic interventions able to slow down the disease progression.


Asunto(s)
Enfermedad de Alzheimer , Neuronas Dopaminérgicas , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Dopamina , Ratones , Pirimidinas , Área Tegmental Ventral
12.
Alzheimers Res Ther ; 12(1): 150, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33198763

RESUMEN

BACKGROUND: In recent years, mechanistic, epidemiologic, and interventional studies have indicated beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) against brain aging and age-related cognitive decline, with the most consistent effects against Alzheimer's disease (AD) confined especially in the early or prodromal stages of the pathology. In the present study, we investigated the action of n-3 PUFA supplementation on behavioral performances and hippocampal neurogenesis, volume, and astrogliosis in aged mice subjected to a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valuable model to mimic one of the most reliable hallmarks of early AD neuropathology. METHODS: Aged mice first underwent mu-p75-saporin immunotoxin intraventricular lesions to obtain a massive cholinergic depletion and then were orally supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks. Four weeks after the beginning of the dietary supplementation, anxiety levels as well as mnesic, social, and depressive-like behaviors were evaluated. Subsequently, hippocampal morphological and biochemical analyses and n-3 PUFA brain quantification were carried out. RESULTS: The n-3 PUFA treatment regulated the anxiety alterations and reverted the novelty recognition memory impairment induced by the cholinergic depletion in aged mice. Moreover, n-3 PUFA preserved hippocampal volume, enhanced neurogenesis in the dentate gyrus, and reduced astrogliosis in the hippocampus. Brain levels of n-3 PUFA were positively related to mnesic abilities. CONCLUSIONS: The demonstration that n-3 PUFA are able to counteract behavioral deficits and hippocampal neurodegeneration in cholinergically depleted aged mice promotes their use as a low-cost, safe nutraceutical tool to improve life quality at old age, even in the presence of first stages of AD.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Ácidos Grasos Omega-3 , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Colinérgicos , Hipocampo , Ratones
13.
Life Sci Alliance ; 3(10)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32753528

RESUMEN

RNA-binding proteins orchestrate the composite life of RNA molecules and impact most physiological processes, thus underlying complex phenotypes. The RNA-binding protein Sam68 regulates differentiation processes by modulating splicing, polyadenylation, and stability of select transcripts. Herein, we found that Sam68 -/- mice display altered regulation of alternative splicing in the spinal cord of key target genes involved in synaptic functions. Analysis of the motor units revealed that Sam68 ablation impairs the establishment of neuromuscular junctions and causes progressive loss of motor neurons in the spinal cord. Importantly, alterations of neuromuscular junction morphology and properties in Sam68 -/- mice correlate with defects in muscle and motor unit integrity. Sam68 -/- muscles display defects in postnatal development, with manifest signs of atrophy. Furthermore, fast-twitch muscles in Sam68 -/- mice show structural features typical of slow-twitch muscles, suggesting alterations in the metabolic and functional properties of myofibers. Collectively, our data identify a key role for Sam68 in muscle development and suggest that proper establishment of motor units requires timely expression of synaptic splice variants.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Empalme Alternativo/genética , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Motoras/metabolismo , Unión Neuromuscular/fisiología , Empalme del ARN/genética , Empalme del ARN/fisiología , Proteínas de Unión al ARN/genética , Sinapsis/metabolismo
14.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143275

RESUMEN

As major components of neuronal membranes, omega-3 polyunsaturated fatty acids (n-3 PUFA) exhibit a wide range of regulatory functions. Recent human and animal studies indicate that n-3 PUFA may exert beneficial effects on aging processes. Here we analyzed the neuroprotective influence of n-3 PUFA supplementation on behavioral deficits, hippocampal neurogenesis, volume loss, and astrogliosis in aged mice that underwent a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valid model to mimic a key component of the cognitive deficits associated with dementia. Aged mice were supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks and then cholinergically depleted with mu-p75-saporin immunotoxin. Two weeks after lesioning, mice were behaviorally tested to assess anxious, motivational, social, mnesic, and depressive-like behaviors. Subsequently, morphological and biochemical analyses were performed. In lesioned aged mice the n-3 PUFA pre-treatment preserved explorative skills and associative retention memory, enhanced neurogenesis in the dentate gyrus, and reduced volume and VAChT levels loss as well as astrogliosis in hippocampus. The present findings demonstrating that n-3 PUFA supplementation before cholinergic depletion can counteract behavioral deficits and hippocampal neurodegeneration in aged mice advance a low-cost, non-invasive preventive tool to enhance life quality during aging.


Asunto(s)
Neuronas Colinérgicas/citología , Suplementos Dietéticos , Ácidos Grasos Omega-3/administración & dosificación , Gliosis/prevención & control , Fármacos Neuroprotectores/farmacología , Prosencéfalo/citología , Acetilcolina/metabolismo , Animales , Conducta Animal , Colina O-Acetiltransferasa/metabolismo , Neuronas Colinérgicas/patología , Trastornos del Conocimiento/prevención & control , Densitometría , Conducta Alimentaria , Femenino , Hipocampo/citología , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Neuroprotección , Aceite de Oliva/administración & dosificación , Calidad de Vida , Saporinas , Conducta Social
15.
J Pathol ; 251(2): 113-116, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32207855

RESUMEN

The CISD2 gene encodes the CDGSH iron-sulfur domain-containing protein 2. Cisd2 is involved in mammalian lifespan control, the unfolded protein response, Ca2+ buffering, and autophagy regulation. It has been demonstrated previously that Cisd2 deficiency causes an accelerated ageing phenotype characterised by the accumulation of damaged mitochondria, while Cisd2 overexpression leads to mitochondrial protection against typical age-associated alterations. Accumulating data suggest that neuronal amyloid-beta (Aß) deposition, Ca2+ dysregulation, impairment of autophagic flux, and accumulation of damaged organelles including mitochondria play an important role in Alzheimer's disease (AD) pathogenesis. In a recent issue of The Journal of Pathology, Yi-Fan Chen and collaborators put together all these experimental observations and demonstrated that Cisd2 overexpression attenuates AD pathogenesis by guaranteeing mitochondrial quality and synaptic functions. The authors report convincing evidence to highlight the role of Cisd2 in Aß-mediated mitochondrial damage and, interestingly, this neuroprotection could be dependent on other molecular mechanisms beyond the canonical and previously described roles of Cisd2. Collectively, these data open up new avenues in neuroprotection and highlight Cisd2 as a promising new target in AD. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de la Membrana , Animales , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/genética , Mitocondrias , Proteínas del Tejido Nervioso , Neuronas , Reino Unido
16.
Neurobiol Dis ; 139: 104787, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32032729

RESUMEN

TG2576 mice show highest levels of the full length mutant Swedish Human Amyloid Precursor Protein (APPKM670/671LN) during prodromal and early sympotomatic stages. Interestingly, this occurs in association with the unbalanced expression of two of its RNA Binding proteins (RBPs) opposite regulators, the Fragile-X Mental Retardation Protein (FMRP) and the heteronuclear Ribonucleoprotein C (hnRNP C). Whether an augmentation in overall translational efficiency also contributes to the elevation of APP levels at those early developmental stages is currently unknown. We investigated this possibility by performing a longitudinal polyribosome profiling analysis of APP mRNA and protein in total hippocampal extracts from Tg2576 mice. Results showed that protein polysomal signals were exclusively detected in pre-symptomatic (1 months) and early symptomatic (3 months) mutant mice. Differently, hAPP mRNA polysomal signals were detected at any age, but a peak of expression was found when mice were 3-month old. Consistent with an early but transient rise of translational efficiency, the phosphorylated form of the initial translation factor eIF2α (p-eIF2α) was reduced at pre-symptomatic and early symptomatic stages, whereas it was increased at the fully symptomatic stage. Pharmacological downregulation of overall translation in early symptomatic mutants was then found to reduce hippocampal levels of full length APP, Aßspecies, BACE1 and Caspase-3, to rescue predominant LTD at hippocampal synapses, to revert dendritic spine loss and memory alterations, and to reinstate memory-induced c-fosactivation. Altogether, our findings demonstrate that overall translation is upregulated in prodromal and early symptomatic Tg2576 mice, and that restoring proper translational control at the onset of AD-like symptoms blocks the emergence of the AD-like phenotype.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Síntomas Prodrómicos , Regulación hacia Arriba , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides , Animales , Modelos Animales de Enfermedad , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Fosforilación , ARN Mensajero/metabolismo , Sinapsis/metabolismo
17.
Ann Clin Transl Neurol ; 6(11): 2261-2269, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31617317

RESUMEN

OBJECTIVE: Autoantibody-mediated forms of encephalitis (AE) include neurological disorders characterized by subacute memory loss, movement disorders, and, often, frequent, focal epileptic seizures. Yet, the electrophysiological effects of these autoantibodies on neuronal function have received little attention. In this study, we assessed the effects of CSF containing autoantibodies on intrinsic and extrinsic properties of hippocampal neurons, to define their epileptogenic potential. METHODS: We compared the effects of CSF containing leucine-rich glioma inactivated 1 (LGI1), contactin-associated protein-like 2 (CASPR2), and γ-aminobutyric acid receptor B (GABAB R) antibodies on ex vivo electrophysiological parameters after stereotactic hippocampal inoculation into mice. Whole-cell patch-clamp and extracellular recordings from CA1 pyramidal neurons and CA3-CA1 field recordings in ex vivo murine brain slices were used to study neuronal function. RESULTS: By comparison to control CSF, AE CSFs increased the probability of glutamate release from CA3 neurons. In addition, LGI1- and CASPR2 antibodies containing CSFs induced epileptiform activity at a population level following Schaffer collateral stimulation. CASPR2 antibody containing CSF was also associated with higher spontaneous firing of CA1 pyramidal neurons. On the contrary, GABAB R antibody containing CSF did not elicit changes in intrinsic neuronal activity and field potentials. INTERPRETATION: Using patient CSF, we have demonstrated that the AE-associated antibodies against LGI1 and CASPR2 are able to increase hippocampal CA1 neuron excitability, facilitating epileptiform activity. These findings provide in vivo pathogenic insights into neuronal dysfunction in these conditions.


Asunto(s)
Autoanticuerpos , Enfermedades Autoinmunes del Sistema Nervioso , Encefalitis , Epilepsia , Hipocampo , Animales , Autoanticuerpos/líquido cefalorraquídeo , Autoanticuerpos/farmacología , Autoantígenos/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/complicaciones , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Encefalitis/complicaciones , Encefalitis/inmunología , Epilepsia/etiología , Epilepsia/inmunología , Hipocampo/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/inmunología , Masculino , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/inmunología , Neuronas/efectos de los fármacos , Receptores de GABA-B/inmunología
19.
Nat Commun ; 10(1): 3945, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477726

RESUMEN

Neuroinflammation is one of the hallmarks of Parkinson's disease (PD) and may contribute to midbrain dopamine (DA) neuron degeneration. Recent studies link chronic inflammation with failure to resolve early inflammation, a process operated by specialized pro-resolving mediators, including resolvins. However, the effects of stimulating the resolution of inflammation in PD - to modulate disease progression - still remain unexplored. Here we show that rats overexpressing human α-synuclein (Syn) display altered DA neuron properties, reduced striatal DA outflow and motor deficits prior to nigral degeneration. These early alterations are coupled with microglia activation and perturbations of inflammatory and pro-resolving mediators, namely IFN-γ and resolvin D1 (RvD1). Chronic and early RvD1 administration in Syn rats prevents central and peripheral inflammation, as well as neuronal dysfunction and motor deficits. We also show that endogenous RvD1 is decreased in human patients with early-PD. Our results suggest there is an imbalance between neuroinflammatory and pro-resolving processes in PD.


Asunto(s)
Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/administración & dosificación , Inflamación/prevención & control , Degeneración Nerviosa/prevención & control , Enfermedad de Parkinson/prevención & control , Animales , Ácidos Docosahexaenoicos/genética , Ácidos Docosahexaenoicos/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Humanos , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...