Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
2.
Artículo en Inglés | MEDLINE | ID: mdl-38736470

RESUMEN

The molecular mechanisms that regulate progressive pulmonary fibrosis remain poorly understood. Type 2 alveolar epithelial cells (AEC2s) function as adult stem cells in the lung. We previously showed that there is a loss of AEC2s and a failure of AEC2 renewal in the lungs of idiopathic pulmonary fibrosis (IPF) patients. We also reported that beta-arrestins are the key regulators of fibroblast invasion, and beta-arrestin 1 and 2 deficient mice exhibit decreased mortality, decreased matrix deposition, and increased lung function in bleomycin-induced lung fibrosis. However, the role of beta-arrestins in AEC2 regeneration is unclear. In this study, we investigated the role and mechanism of Arrestin beta 1 (ARRB1) in AEC2 renewal and in lung fibrosis. We used conventional deletion as well as cell type-specific deletion of ARRB1 in mice and found that Arrb1 deficiency in fibroblasts protects mice from lung fibrosis, and the knockout mice exhibit enhanced AEC2 regeneration in vivo, suggesting a role of fibroblast-derived ARRB1 in AEC2 renewal. We further found that Arrb1-deficient fibroblasts promotes AEC2 renewal in 3D organoid assays. Mechanistically, we found that CCL7 is among the top downregulated cytokines in Arrb1 deficient fibroblasts and CCL7 inhibits AEC2 regeneration in 3D organoid experiments. Therefore, fibroblast ARRB1 mediates AEC2 renewal, possibly by releasing chemokine CCL7, leading to fibrosis in the lung.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38657143

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is an aging-associated interstitial lung disease resulting from repeated epithelial injury and inadequate epithelial repair. Alveolar type II cells (AEC2) are progenitor cells that maintain epithelial homeostasis and repair the lung after injury. In the current study, we assessed lipid metabolism in AEC2s from human lungs of IPF patients and healthy donors, as well as AEC2s from bleomycin-injured young and old mice. Through single cell RNA sequencing (scRNA-seq), we observed that lipid metabolism-related genes were downregulated in IPF AEC2s and bleomycin-injured mouse AEC2s. Aging aggravated this decrease and hindered recovery of lipid metabolism gene expression in AEC2s after bleomycin injury. Pathway analyses revealed down-regulation of genes related to lipid biosynthesis and fatty acid -oxidation in AEC2s from IPF lungs and bleomycin-injured, aged mouse lungs compared to the respective controls. We confirmed decreased cellular lipid content in AEC2s from IPF lungs and bleomycin-injured, aged mouse lungs using immunofluorescence staining and flow cytometry. We further show that lipid metabolism was associated with AEC2 progenitor function. Lipid supplementation and peroxisome proliferator activated receptor gamma (PPARγ) activation promoted progenitor renewal capacity of both human and mouse AEC2s in 3D organoid cultures. Lipid supplementation also increased AEC2 proliferation and expression of SFTPC in AEC2s. In summary, we identified a lipid metabolism deficiency in AEC2s from lungs of patients with IPF and bleomycin-injured aged mice. Restoration of lipid metabolism homeostasis in AEC2s might promote AEC2 progenitor function and offer new opportunities for therapeutic approaches to IPF. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

4.
Artículo en Inglés | MEDLINE | ID: mdl-38635761

RESUMEN

Aging poses a global public health challenge, which is linked to the rise of age-related lung diseases. The precise understanding of the molecular and genetic changes in the aging lung that elevate the risk of acute and chronic lung diseases remains incomplete. Alveolar type II (AT2) cells are stem cells that maintain epithelial homeostasis and repair the lung after injury. AT2 progenitor function decreases with aging. The maintenance of AT2 function requires niche support from other cell types, but little has been done to characterize alveolar alterations with aging in the AT2 niche. To systematically profile the genetic changes associated with age, we present a single-cell transcriptional atlas comprising nearly half a million cells from the healthy lungs of human subjects spanning various ages, sexes, and smoking statuses. Most annotated cell lineages in aged lungs exhibit dysregulated genetic programs. Specifically, the aged alveolar epithelial (AT2) cells demonstrate loss of epithelial identities, heightened inflammaging characterized by increased expression of AP-1 transcription factor and chemokine genes, and significantly increased cellular senescence. Furthermore, the aged mesenchymal cells display a remarkable decrease in Collagen and Elastin transcription and a loss of support to epithelial cell stemness. The decline of the AT2 niche is further exacerbated by a dysregulated genetic program in macrophages and dysregulated communications between AT2 and macrophages in aged human lungs. These findings highlight the dysregulations observed in both AT2 stem cells and their supportive niche cells, potentially contributing to the increased susceptibility of aged populations to lung diseases. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/). For commercial usage and reprints please contact Diane Gern (dgern@thoracic.org).

5.
Artículo en Inglés | MEDLINE | ID: mdl-38484130

RESUMEN

Rationale: Idiopathic pulmonary fibrosis is a fatal and progressive disease with limited treatment options. Objectives: To assess the efficacy and safety of CC-90001, an oral inhibitor of c-Jun N-terminal kinase 1, in patients with idiopathic pulmonary fibrosis. Methods: NCT03142191 was a phase 2, randomized (1:1:1), double-blind, placebo-controlled study in which patients received CC-90001 (200 or 400 mg) or placebo once daily for 24 weeks. Background antifibrotic treatment (pirfenidone) was allowed. The primary endpoint was change in percentage of predicted forced vital capacity (ppFVC) from baseline to Week 24; secondary endpoints included safety. Measurements and Main Results: In total, 112 patients received ≥1 dose of study drug. The study was terminated early due to a strategic decision made by the sponsor. Ninety-one patients (81%) completed the study. The least-squares mean changes from baseline in ppFVC at Week 24 were -3.1% (placebo), -2.1% (200 mg), and -1.0% (400 mg); the differences compared with placebo were 1.1% (200 mg; 95% CI: -2.1, 4.3; P=.50) and 2.2% (400 mg; 95% CI: -1.1, 5.4; P=.19). Adverse event frequency was similar in patients in the combined CC-90001 arms versus placebo. The most common adverse events were nausea, diarrhea, and vomiting, which were more frequent in patients in CC-90001 arms versus placebo. Fewer patients in the CC-90001 than in the placebo arm experienced cough and dyspnea. Conclusions: Treatment with CC-90001 over 24 weeks led to numerical improvements in ppFVC in patients with idiopathic pulmonary fibrosis compared to placebo. CC-90001 was generally well tolerated, consistent with previous studies. Clinical trial registration available at www.clinicaltrials.gov, ID: NCT03142191.

6.
Science ; 383(6685): eadd6371, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38386758

RESUMEN

The steps governing healing with or without fibrosis within the same microenvironment are unclear. After acute kidney injury (AKI), injured proximal tubular epithelial cells activate SOX9 for self-restoration. Using a multimodal approach for a head-to-head comparison of injury-induced SOX9 lineages, we identified a dynamic SOX9 switch in repairing epithelia. Lineages that regenerated epithelia silenced SOX9 and healed without fibrosis (SOX9on-off). By contrast, lineages with unrestored apicobasal polarity maintained SOX9 activity in sustained efforts to regenerate, which were identified as a SOX9on-on Cadherin6pos cell state. These reprogrammed cells generated substantial single-cell WNT activity to provoke a fibroproliferative response in adjacent fibroblasts, driving AKI to chronic kidney disease. Transplanted human kidneys displayed similar SOX9/CDH6/WNT2B responses. Thus, we have uncovered a sensor of epithelial repair status, the activity of which determines regeneration with or without fibrosis.


Asunto(s)
Lesión Renal Aguda , Riñón , Insuficiencia Renal Crónica , Factor de Transcripción SOX9 , Animales , Humanos , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Células Epiteliales , Fibrosis , Riñón/patología , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Factor de Transcripción SOX9/genética , Regeneración , Ratones
7.
bioRxiv ; 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37398304

RESUMEN

Aging poses a global public health challenge, associated with molecular and physiological changes in the lungs. It increases susceptibility to acute and chronic lung diseases, yet the underlying molecular and cellular drivers in aged populations are not fully appreciated. To systematically profile the genetic changes associated with age, we present a single-cell transcriptional atlas comprising nearly half a million cells from the healthy lungs of human subjects spanning various ages, sexes, and smoking statuses. Most annotated cell lineages in aged lungs exhibit dysregulated genetic programs. Specifically, the aged alveolar epithelial cells, including both alveolar type II (AT2) and type I (AT1) cells, demonstrate loss of epithelial identities, heightened inflammaging characterized by increased expression of AP-1 transcription factor and chemokine genes, and significantly increased cellular senescence. Furthermore, the aged mesenchymal cells display a remarkable decrease in Collagen and Elastin transcription. The decline of the AT2 niche is further exacerbated by a weakened endothelial cell phenotype and a dysregulated genetic program in macrophages. These findings highlight the dysregulation observed in both AT2 stem cells and their supportive niche cells, potentially contributing to the increased susceptibility of aged populations to lung diseases.

8.
Am J Physiol Cell Physiol ; 325(2): C483-C495, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37458437

RESUMEN

Pulmonary fibrosis comprises a range of chronic interstitial lung diseases (ILDs) that impose a significant burden on patients and public health. Among these, idiopathic pulmonary fibrosis (IPF), a disease of aging, is the most common and most severe form of ILD and is treated largely by lung transplantation. The lack of effective treatments to stop or reverse lung fibrosis-in fact, fibrosis in most organs-has sparked the need to understand causative mechanisms with the goal of identifying critical points for potential therapeutic intervention. Findings from many groups have indicated that repeated injury to the alveolar epithelium-where gas exchange occurs-leads to stem cell exhaustion and impaired alveolar repair that, in turn, triggers the onset and progression of fibrosis. Cellular senescence of alveolar epithelial progenitors is a critical cause of stemness failure. Hence, senescence impairs repair and thus contributes significantly to fibrosis. In this review, we discuss recent evidence indicating that senescence of epithelial progenitor cells impairs alveolar homeostasis and repair creating a profibrotic environment. Moreover, we discuss the impact of senescent alveolar epithelial progenitors, alveolar type 2 (AT2) cells, and AT2-derived transitional epithelial cells in fibrosis. Emerging evidence indicates that transitional epithelial cells are prone to senescence and, hence, are a new player involved in senescence-associated lung fibrosis. Understanding the complex interplay of cell types and cellular regulatory factors contributing to alveolar epithelial progenitor senescence will be crucial to developing targeted therapies to mitigate their downstream profibrotic sequelae and to promote normal alveolar repair.NEW & NOTEWORTHY With an aging population, lung fibrotic diseases are becoming a global health burden. Dysfunctional repair of the alveolar epithelium is a key causative process that initiates lung fibrosis. Normal alveolar regeneration relies on functional progenitor cells; however, the senescence of these cells, which increases with age, hinders their ability to contribute to repair. Here, we discuss studies on the control and consequence of progenitor cell senescence in fibrosis and opportunities for research.


Asunto(s)
Células Epiteliales Alveolares , Fibrosis Pulmonar Idiopática , Humanos , Anciano , Células Epiteliales Alveolares/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Senescencia Celular , Envejecimiento , Células Madre/metabolismo , Células Epiteliales/metabolismo , Pulmón/metabolismo
9.
Elife ; 122023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314162

RESUMEN

Aging is a critical risk factor in idiopathic pulmonary fibrosis (IPF). Dysfunction and loss of type 2 alveolar epithelial cells (AEC2s) with failed regeneration is a seminal causal event in the pathogenesis of IPF, although the precise mechanisms for their regenerative failure and demise remain unclear. To systematically examine the genomic program changes of AEC2s in aging and after lung injury, we performed unbiased single-cell RNA-seq analyses of lung epithelial cells from uninjured or bleomycin-injured young and old mice, as well as from lungs of IPF patients and healthy donors. We identified three AEC2 subsets based on their gene signatures. Subset AEC2-1 mainly exist in uninjured lungs, while subsets AEC2-2 and AEC2-3 emerged in injured lungs and increased with aging. Functionally, AEC2 subsets are correlated with progenitor cell renewal. Aging enhanced the expression of the genes related to inflammation, stress responses, senescence, and apoptosis. Interestingly, lung injury increased aging-related gene expression in AEC2s even in young mice. The synergistic effects of aging and injury contributed to impaired AEC2 recovery in aged mouse lungs after injury. In addition, we also identified three subsets of AEC2s from human lungs that formed three similar subsets to mouse AEC2s. IPF AEC2s showed a similar genomic signature to AEC2 subsets from bleomycin-injured old mouse lungs. Taken together, we identified synergistic effects of aging and AEC2 injury in transcriptomic and functional analyses that promoted fibrosis. This study provides new insights into the interactions between aging and lung injury with interesting overlap with diseased IPF AEC2 cells.


Asunto(s)
Lesión Pulmonar , Fibrosis Pulmonar , Humanos , Ratones , Animales , Fibrosis Pulmonar/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Pulmón/patología , Envejecimiento , Bleomicina/toxicidad
10.
Am J Respir Cell Mol Biol ; 69(1): 45-56, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36927333

RESUMEN

Progressive pulmonary fibrosis results from a dysfunctional tissue repair response and is characterized by fibroblast proliferation, activation, and invasion and extracellular matrix accumulation. Lung fibroblast heterogeneity is well recognized. With single-cell RNA sequencing, fibroblast subtypes have been reported by recent studies. However, the roles of fibroblast subtypes in effector functions in lung fibrosis are not well understood. In this study, we incorporated the recently published single-cell RNA-sequencing datasets on murine lung samples of fibrosis models and human lung samples of fibrotic diseases and analyzed fibroblast gene signatures. We identified and confirmed the novel fibroblast subtypes we reported recently across all samples of both mouse models and human lung fibrotic diseases, including idiopathic pulmonary fibrosis, systemic sclerosis-associated interstitial lung disease, and coronavirus disease (COVID-19). Furthermore, we identified specific cell surface proteins for each fibroblast subtype through differential gene expression analysis, which enabled us to isolate primary cells representing distinct fibroblast subtypes by flow cytometry sorting. We compared matrix production, including fibronectin, collagen, and hyaluronan, after profibrotic factor stimulation and assessed the invasive capacity of each fibroblast subtype. Our results suggest that in addition to myofibroblasts, lipofibroblasts and Ebf1+ (Ebf transcription factor 1+) fibroblasts are two important fibroblast subtypes that contribute to matrix deposition and also have enhanced invasive, proliferative, and contraction phenotypes. The histological locations of fibroblast subtypes are identified in healthy and fibrotic lungs by these cell surface proteins. This study provides new insights to inform approaches to targeting lung fibroblast subtypes to promote the development of therapeutics for lung fibrosis.


Asunto(s)
COVID-19 , Fibrosis Pulmonar Idiopática , Humanos , Ratones , Animales , COVID-19/metabolismo , Fibroblastos/metabolismo , Pulmón/patología , Fibrosis Pulmonar Idiopática/patología , Fibrosis , Proteínas de la Membrana/metabolismo
11.
Am J Respir Cell Mol Biol ; 68(3): 302-313, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36318668

RESUMEN

Loss of epithelial integrity, bronchiolarization, and fibroblast activation are key characteristics of idiopathic pulmonary fibrosis (IPF). Prolonged accumulation of basal-like cells in IPF may impact the fibrotic niche to promote fibrogenesis. To investigate their role in IPF, basal cells were isolated from IPF explant and healthy donor lung tissues. Single-cell RNA sequencing was used to assess differentially expressed genes in basal cells. Basal cell and niche interaction was demonstrated with the sLP-mCherry niche labeling system. Luminex assays were used to assess cytokines secreted by basal cells. The role of basal cells in fibroblast activation was studied. Three-dimensional organoid culture assays were used to interrogate basal cell effects on AEC2 (type 2 alveolar epithelial cell) renewal capacity. Perturbation was used to investigate WNT7A function in vitro and in a repetitive bleomycin model in vivo. We found that WNT7A is highly and specifically expressed in basal-like cells. Proteins secreted by basal cells can be captured by neighboring fibroblasts and AEC2s. Basal cells or basal cell-conditioned media activate fibroblasts through WNT7A. Basal cell-derived WNT7A inhibits AEC2 progenitor cell renewal in three-dimensional organoid cultures. Neutralizing antibodies against WNT7A or a small molecule inhibitor of Frizzled signaling abolished basal cell-induced fibroblast activation and attenuated lung fibrosis in mice. In summary, basal cells and basal cell-derived WNT7A are key components of the fibrotic niche, providing a unique non-stem cell function of basal cells in IPF progression and a novel targeting strategy for IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Animales , Ratones , Bleomicina/farmacología , Fibroblastos/metabolismo , Fibrosis , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Transducción de Señal
13.
J Exp Med ; 219(10)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35980387

RESUMEN

Progressive tissue fibrosis, including idiopathic pulmonary fibrosis (IPF), is characterized by excessive recruitment of fibroblasts to sites of tissue injury and unremitting extracellular matrix deposition associated with severe morbidity and mortality. However, the molecular mechanisms that control progressive IPF have yet to be fully determined. Previous studies suggested that invasive fibroblasts drive disease progression in IPF. Here, we report profiling of invasive and noninvasive fibroblasts from IPF patients and healthy donors. Pathway analysis revealed that the activated signatures of the invasive fibroblasts, the top of which was ERBB2 (HER2), showed great similarities to those of metastatic lung adenocarcinoma cancer cells. Activation of HER2 in normal lung fibroblasts led to a more invasive genetic program and worsened fibroblast invasion and lung fibrosis, while antagonizing HER2 signaling blunted fibroblast invasion and ameliorated lung fibrosis. These findings suggest that HER2 signaling may be a key driver of fibroblast invasion and serve as an attractive target for therapeutic intervention in IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Neoplasias , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrosis , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Neoplasias/patología
14.
J Clin Invest ; 132(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35389887

RESUMEN

Type 2 alveolar epithelial cells (AEC2s) function as progenitor cells in the lung. We have shown previously that failure of AEC2 regeneration results in progressive lung fibrosis in mice and is a cardinal feature of idiopathic pulmonary fibrosis (IPF). In this study, we identified deficiency of a specific zinc transporter, SLC39A8 (ZIP8), in AEC2s from both IPF lungs and lungs of old mice. Loss of ZIP8 expression was associated with impaired renewal capacity of AEC2s and enhanced lung fibrosis. ZIP8 regulation of AEC2 progenitor function was dependent on SIRT1. Replenishment with exogenous zinc and SIRT1 activation promoted self-renewal and differentiation of AEC2s from lung tissues of IPF patients and old mice. Deletion of Zip8 in AEC2s in mice resulted in impaired AEC2 renewal, increased susceptibility to bleomycin injury, and development of spontaneous lung fibrosis. Therapeutic strategies to restore zinc metabolism and appropriate SIRT1 signaling could improve AEC2 progenitor function and mitigate ongoing fibrogenesis.


Asunto(s)
Proteínas de Transporte de Catión , Fibrosis Pulmonar Idiopática , Envejecimiento , Células Epiteliales Alveolares , Animales , Bleomicina , Proteínas de Transporte de Catión/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Ratones , Sirtuina 1/genética , Sirtuina 1/metabolismo , Células Madre/metabolismo , Zinc/metabolismo
15.
MMWR Morb Mortal Wkly Rep ; 71(6): 217-223, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35143466

RESUMEN

In mid-December 2021, the B.1.1.529 (Omicron) variant of SARS-CoV-2, the virus that causes COVID-19, surpassed the B.1.617.2 (Delta) variant as the predominant strain in California.§ Initial reports suggest that the Omicron variant is more transmissible and resistant to vaccine neutralization but causes less severe illness compared with previous variants (1-3). To describe characteristics of patients hospitalized with SARS-CoV-2 infection during periods of Delta and Omicron predominance, clinical characteristics and outcomes were retrospectively abstracted from the electronic health records (EHRs) of adults aged ≥18 years with positive reverse transcription-polymerase chain reaction (RT-PCR) SARS-CoV-2 test results admitted to one academic hospital in Los Angeles, California, during July 15-September 23, 2021 (Delta predominant period, 339 patients) and December 21, 2021-January 27, 2022 (Omicron predominant period, 737 patients). Compared with patients during the period of Delta predominance, a higher proportion of adults admitted during Omicron predominance had received the final dose in a primary COVID-19 vaccination series (were fully vaccinated) (39.6% versus 25.1%), and fewer received COVID-19-directed therapies. Although fewer required intensive care unit (ICU) admission and invasive mechanical ventilation (IMV), and fewer died while hospitalized during Omicron predominance, there were no significant differences in ICU admission or IMV when stratified by vaccination status. Fewer fully vaccinated Omicron-period patients died while hospitalized (3.4%), compared with Delta-period patients (10.6%). Among Omicron-period patients, vaccination was associated with lower likelihood of ICU admission, and among adults aged ≥65 years, lower likelihood of death while hospitalized. Likelihood of ICU admission and death were lowest among adults who had received a booster dose. Among the first 131 Omicron-period hospitalizations, 19.8% of patients were clinically assessed as admitted for non-COVID-19 conditions. Compared with adults considered likely to have been admitted because of COVID-19, these patients were younger (median age = 38 versus 67 years) and more likely to have received at least one dose of a COVID-19 vaccine (84.6% versus 61.0%). Although 20% of SARS-CoV-2-associated hospitalizations during the period of Omicron predominance might be driven by non-COVID-19 conditions, large numbers of hospitalizations place a strain on health systems. Vaccination, including a booster dose for those who are fully vaccinated, remains critical to minimizing risk for severe health outcomes among adults with SARS-CoV-2 infection.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Hospitalización/estadística & datos numéricos , SARS-CoV-2 , Vacunación/estadística & datos numéricos , Adulto , Anciano , Femenino , Humanos , Los Angeles/epidemiología , Masculino , Persona de Mediana Edad , Gravedad del Paciente
16.
Stem Cell Res Ther ; 13(1): 64, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35130980

RESUMEN

Recent advances in single-cell RNA sequencing (scRNA-seq) and epithelium lineage labeling have yielded identification of multiple abnormal epithelial progenitor populations during alveolar type 2 (ATII) cell differentiation into alveolar type 1 (ATI) cells during regenerative lung post-fibrotic injury. These abnormal cells include basaloid/basal-like cells, ATII transition cells, and persistent epithelial progenitors (PEPs). These cells occurred and accumulated during the regeneration of distal airway and alveoli in response to both chronic and acute pulmonary injury. Among the alveolar epithelial progenitors, PEPs express a distinct Krt8+ phenotype that is rarely found in intact alveoli. However, post-injury, the Krt8+ phenotype is seen in dysplastic epithelial cells. Fully understanding the characteristics and functions of these newly found, injury-induced abnormal behavioral epithelial progenitors and the signaling pathways regulating their phenotype could potentially point the way to unique therapeutic targets for fibrosing lung diseases. This review summarizes recent advances in understanding these epithelial progenitors as they relate to uncovering regenerative mechanisms.


Asunto(s)
Lesión Pulmonar , Células Epiteliales Alveolares , Células Epiteliales , Humanos , Pulmón , Alveolos Pulmonares
18.
BMJ Open Respir Res ; 9(1)2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35058236

RESUMEN

INTRODUCTION: Idiopathic pulmonary fibrosis (IPF) is a progressive and often fatal interstitial lung disease (ILD); other ILDs have a progressive, fibrotic phenotype (PF-ILD). Antifibrotic agents can slow but not stop disease progression in patients with IPF or PF-ILD. c-Jun N-terminal kinases (JNKs) are stress-activated protein kinases implicated in the underlying mechanisms of fibrosis, including epithelial cell death, inflammation and polarisation of profibrotic macrophages, fibroblast activation and collagen production. CC-90001, an orally administered (PO), one time per day, JNK inhibitor, is being evaluated in IPF and PF-ILD. METHODS AND ANALYSIS: This is a phase 2, randomised, double-blind, placebo-controlled study evaluating efficacy and safety of CC-90001 in patients with IPF (main study) and patients with PF-ILD (substudy). Both include an 8-week screening period, a 24-week treatment period, up to an 80-week active-treatment extension and a 4-week post-treatment follow-up. Patients with IPF (n=165) will be randomised 1:1:1 to receive 200 mg or 400 mg CC-90001 or placebo administered PO one time per day; up to 25 patients/arm will be permitted concomitant pirfenidone use. Forty-five patients in the PF-ILD substudy will be randomised 2:1 to receive 400 mg CC-90001 or placebo. The primary endpoint is change in per cent predicted forced vital capacity from baseline to Week 24 in patients with IPF. ETHICS AND DISSEMINATION: This study will be conducted in accordance with Good Clinical Practice guidelines, Declaration of Helsinki principles and local ethical and legal requirements. Results will be reported in a peer-reviewed publication. TRIAL REGISTRATION NUMBER: NCT03142191.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Inhibidores de Proteínas Quinasas , Ensayos Clínicos Fase II como Asunto , Fibrosis , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/etiología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Capacidad Vital
19.
Transplantation ; 106(6): 1253-1261, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34534193

RESUMEN

BACKGROUND: Chronic lung allograft dysfunction (CLAD) phenotype determines prognosis and may have therapeutic implications. Despite the clarity achieved by recent consensus statement definitions, their reliance on radiologic interpretation introduces subjectivity. The Center for Computer Vision and Imaging Biomarkers at the University of California, Los Angeles (UCLA) has established protocols for chest high-resolution computed tomography (HRCT)-based computer-aided quantification of both interstitial disease and air-trapping. We applied quantitative image analysis (QIA) at CLAD onset to demonstrate radiographic phenotypes with clinical implications. METHODS: We studied 47 first bilateral lung transplant recipients at UCLA with chest HRCT performed within 90 d of CLAD onset and 47 no-CLAD control HRCTs. QIA determined the proportion of lung volume affected by interstitial disease and air-trapping in total lung capacity and residual volume images, respectively. We compared QIA scores between no-CLAD and CLAD, and between phenotypes. We also assigned radiographic phenotypes based solely on QIA, and compared their survival outcomes. RESULTS: CLAD onset HRCTs had more lung affected by the interstitial disease (P = 0.003) than no-CLAD controls. Bronchiolitis obliterans syndrome (BOS) cases had lower scores for interstitial disease as compared with probable restrictive allograft syndrome (RAS) (P < 0.0001) and mixed CLAD (P = 0.02) phenotypes. BOS cases had more air-trapping than probable RAS (P < 0.0001). Among phenotypes assigned by QIA, the relative risk of death was greatest for mixed (relative risk [RR] 11.81), followed by RAS (RR 6.27) and BOS (RR 3.15). CONCLUSIONS: Chest HRCT QIA at CLAD onset appears promising as a method for precise determination of CLAD phenotypes with survival implications.


Asunto(s)
Bronquiolitis Obliterante , Trasplante de Pulmón , Disfunción Primaria del Injerto , Aloinjertos , Bronquiolitis Obliterante/diagnóstico por imagen , Bronquiolitis Obliterante/etiología , Enfermedad Crónica , Estudios de Seguimiento , Humanos , Pulmón/diagnóstico por imagen , Trasplante de Pulmón/efectos adversos , Disfunción Primaria del Injerto/diagnóstico por imagen , Disfunción Primaria del Injerto/etiología , Estudios Retrospectivos , Factores de Riesgo , Síndrome
20.
Am J Transplant ; 22(2): 565-573, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34464505

RESUMEN

Despite the common detection of non-donor specific anti-HLA antibodies (non-DSAs) after lung transplantation, their clinical significance remains unclear. In this retrospective single-center cohort study of 325 lung transplant recipients, we evaluated the association between donor-specific HLA antibodies (DSAs) and non-DSAs with subsequent CLAD development. DSAs were detected in 30% of recipients and were associated with increased CLAD risk, with higher HRs for both de novo and high MFI (>5000) DSAs. Non-DSAs were detected in 56% of recipients, and 85% of DSA positive tests had concurrent non-DSAs. In general, non-DSAs did not increase CLAD risk in multivariable models accounting for DSAs. However, non-DSAs in conjunction with high BAL CXCL9 levels were associated with increased CLAD risk. Multivariable proportional hazards models demonstrate the importance of the HLA antibody-CXCL9 interaction: CLAD risk increases when HLA antibodies (both DSAs and non-DSAs) are detected in conjunction with high CXCL9. Conversely, CLAD risk is not increased when HLA antibodies are detected with low CXCL9. This study supports the potential utility of BAL CXCL9 measurement as a biomarker to risk stratify HLA antibodies for future CLAD. The ability to discriminate between high versus low-risk HLA antibodies may improve management by allowing for guided treatment decisions.


Asunto(s)
Antígenos HLA , Trasplante de Pulmón , Aloinjertos , Biomarcadores , Quimiocina CXCL9 , Estudios de Cohortes , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/etiología , Supervivencia de Injerto , Humanos , Isoanticuerpos , Trasplante de Pulmón/efectos adversos , Pronóstico , Estudios Retrospectivos , Donantes de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...