Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Chem B ; 12(22): 5272-5298, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38739040

RESUMEN

The advent of polymer-based dielectrics marked a significant breakthrough in dielectric materials. However, despite their many advantages, they pose serious environmental threats. Therefore, in recent years, there has been growing interest in bio-based polymers as a sustainable alternative to traditional petroleum-based polymers. Their renewable nature and reduced environmental impact can fulfil the rising demand for eco-friendly substitutes. Beyond their ecological benefits, bio-based polymers also possess distinctive electrical properties that make them extremely attractive in a variety of applications. Considering these, herein, we present recent advancements in bio-based dielectric polymers and nanocomposites. First, the fundamental concepts of dielectric and polymer-based dielectric materials are covered. Then, we will delve into the discussion of recent advancements in the dielectric properties and thermal stability of bio-based polymers, including polylactic acid, polyhydroxyalkanoates, polybutylene succinate, starch, cellulose, chitosan, chitins, and alginates, and their nanocomposites. Other novel bio-based dielectric polymers and their distinct dielectric characteristics have also been pointed out. In an additional section, the piezoelectric properties of these polymers and their recent biomedical applications have been highlighted and discussed thoroughly. In conclusion, this paper thoroughly discusses the recent advances in bio-based dielectric polymers and their potential to revolutionize the biomedical industry while cultivating a more sustainable and greener future.


Asunto(s)
Polímeros , Polímeros/química , Materiales Biocompatibles/química , Humanos , Nanocompuestos/química
2.
Environ Res ; 252(Pt 2): 118856, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599447

RESUMEN

The contamination of wastewater with antibiotics has emerged as a critical global challenge, with profound implications for environmental integrity and human well-being. Adsorption techniques have been meticulously investigated and developed to mitigate and alleviate their effects. In this study, we have investigated the adsorption behaviour of Erythromycin (ERY), Gentamicin (GEN), Levofloxacin (LEVO), and Metronidazole (MET) antibiotics as pharmaceutical contaminants (PHCs) on amide-functionalized (RC (=O)NH2)/MIL-53 (Al) (AMD/ML53A), using molecular simulations and density functional theory (DFT) calculations. Based on our DFT calculations, it becomes apparent that the adsorption tendencies of antibiotics are predominantly governed by the presence of AMD functional groups on the adsorbent surface. Specifically, hydrogen bonding (HB) and van der Waals (vdW) interactions between antibiotics and AMD groups serve as the primary mechanisms facilitating adsorption. Furthermore, we have observed that the adsorption behaviors of these antibiotics are influenced by their respective functional groups, molecular shapes, and sizes. Our molecular simulations delved into how the AMD/ML53A surfaces interact with antibiotics as PHCs. Moreover, various chemical quantum descriptors based on Frontier Molecular Orbitals (FMO) were explored to elucidate the extent of AMD/ML53A adsorption and to assess potential alterations in their electronic properties throughout the adsorption process. Monte Carlo simulation showed that ERY molecules adsorb stronger to the adsorbent in acidic and basic conditions than other contaminants, with high energies: -404.47 kcal/mol in acidic and -6375.26 kcal/mol in basic environments. Molecular dynamics (MD) simulations revealed parallel orientation for the ERY molecule's adsorption on AMD/ML53A with 80% rejection rate. In conclusion, our study highlighted the importance of modeling in developing practical solutions for removing antibiotics as PHCs from wastewater. The insights gained from our calculations can facilitate the design of more effective adsorption materials, ultimately leading to a more hygienic and sustainable ecosystem.


Asunto(s)
Antibacterianos , Teoría Funcional de la Densidad , Aguas Residuales , Contaminantes Químicos del Agua , Antibacterianos/química , Antibacterianos/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Adsorción , Nanoestructuras/química , Estructuras Metalorgánicas/química , Simulación de Dinámica Molecular
3.
ChemistryOpen ; 13(4): e202300176, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38230849

RESUMEN

This work introduces an easy method for producing Bi2O3, ZnO, ZnO-Bi2O3 nanoparticles (NPs) by Biebersteinia Multifida extract. Our products have been characterized through the outcomes which recorded with using powder X-ray diffractometry (PXRD), Raman, energy dispersive X-ray (EDX), field emission-scanning electron microscopy (FE-SEM), and Fourier-transform infrared (FT-IR) techniques. The finding of SEM presented porous structure and spherical morphology for Bi2O3 and ZnO NPs, respectively. While FE-SEM image of bimetallic nanoparticles showed both porous and spherical morphologies for them; so that spherical particles of ZnO have sat on the porous structure of Bi2O3 NPs. According to the PXRD results, the crystallite sizes of Bi2O3, ZnO and ZnO-Bi2O3 NPs have been obtained 57.69, 21.93, and 43.42 nm, respectively. Antibacterial performance of NPs has been studied on Staphylococcus epidermidis and Pseudomonas aeruginosa bacteria, to distinguish the minimum microbial inhibitory concentration (MIC). Antimicrobial outcomes have showed a better effect for ZnO-Bi2O3 NPs. Besides, wondering about the cytotoxic action against cancer cell lines, the MTT results have verified the intense cytotoxic function versus breast cancer cells (MCF-7). According to these observations, obtained products can prosper medical and biological applications.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Nanopartículas , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Óxido de Zinc/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química
5.
Bioprocess Biosyst Eng ; 45(7): 1201-1210, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35704072

RESUMEN

Dental decay is known in the world as the most common human infectious disease. Ascending process of dental caries index in the world shows the failure of oral disease prevention. Streptococcus mutans bacteria cause acid damage and tooth decay by producing acid over time. Nanomaterials with suitable functionality, high permeability, extremely large surface area, significant reactivity, unique mechanical features, and non-bacterial resistance can be considered as promising agents for antimicrobial and antiviral applications. In this study, nickel oxide (NiO) nanoparticles with size range from 2 to 16 nm containing Stevia natural sweetener were eco-friendly synthesized via a simple method. Additionally, their various concentrations were evaluated on S. mutans bacteria by applying the broth dilution method. The results demonstrated that these spherical NiO nanoparticles had efficient bacteriostatic activity on this gram-positive coccus.


Asunto(s)
Caries Dental , Nanopartículas , Antibacterianos/farmacología , Biopelículas , Humanos , Pruebas de Sensibilidad Microbiana , Níquel , Extractos Vegetales/farmacología , Streptococcus mutans
6.
Molecules ; 25(1)2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31888030

RESUMEN

Innovative composites based on an amorphous-carbon matrix containing a second phase ZnO oxide and/or highly dispersed Zn metallic were synthesized via a modified Pechini route, in which a partial pyrolysis method was reached. Studies of adsorption in the dark and the photocatalytic activity for the cationic azo-dye, basic blue 41, and degradation were carried out. X-ray diffraction patterns for the carbon matrix and its composite with Zn show characteristics of the amorphous carbon. The infrared in the mid region of the composite prepared with ZnO and Zn exhibit vibrational bands related to bonds zinc oxide. The surface pH of the material is the main factor responsible for the adsorption of the azo-dye, but the contribution of mesopores favored the diffusion of molecules from the bulk of solution to the pore framework. Esters-like functional groups on the surface of carbons hinder the adsorption of the azo-dye. When Zn is embedded within amorphous carbon the photocatalytic activity of the composites showed up to 2.4 higher than neat ZnO. The enhancement in the photocatalytic activity and stability of C/ZnO/Zn and C/Zn composites is discussed in terms of a protector effect by the carbon layers inserted in composites. Carbon layers are responsible to inhibit the lixiviation of ZnO particles along irradiation.


Asunto(s)
Compuestos Azo/química , Benzotiazoles/química , Carbono/química , Óxido de Zinc/química , Catálisis , Nanopartículas del Metal/química , Fotólisis , Luz Solar , Difracción de Rayos X
7.
J Colloid Interface Sci ; 496: 211-221, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28232294

RESUMEN

The photocatalytic activity of a series of novel KSr2Nb5O15 materials was studied using the photooxidation of methylene blue as model reaction. The influence of the calcination time upon the crystalline structure and photoactivity was verified. Characterization was performed by XRD, SEM, FTIR, UV-Vis/DR, Helium picnometry, and N2 and CO2 adsorption-desorption isotherms. The diffraction line profile and the refinement of the structural parameters of KSr2Nb5O15 were obtained from the XRD patterns by the Rietveld method. Data showed that samples were photoactive under UV irradiation, regardless the synthesis conditions. However, the calcination time had a clear influence upon the photocatalytic activity of the samples, being more efficient towards the degradation of the dye those obtained at a lower calcination time. Indeed, the sample calcined for 4h showed up to 4 times higher photocatalytic activity than commercial TiO2. Additionally, a correlation between the photocatalytic activity and the displacement of the Nb ion from the central position in the [NbO6] octahedron was found. It is suggested that this fact causes an important polarization of the niobate structure. The apical oxygen in these samples is very reactive and can lead to the formation of superoxoradical anions (O2-) showing that KSr2Nb5O15 can be potentially used in photocatalytic reactions under UV irradiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA