Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mBio ; 15(9): e0038424, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39087767

RESUMEN

Serine protease inhibitors (serpins) constitute the largest family of protease inhibitors expressed in humans, but their role in infection remains largely unexplored. In infected macrophages, the mycobacterial ESX-1 type VII secretion system permeabilizes internal host membranes and causes leakage into the cytosol of host DNA, which induces type I interferon (IFN) production via the cyclic GMP-AMP synthase (cGAS) and stimulator of IFN genes (STING) surveillance pathway, and promotes infection in vivo. Using the Mycobacterium marinum infection model, we show that ESX-1-mediated type I IFN signaling in macrophages selectively induces the expression of serpina3f and serpina3g, two cytosolic serpins of the clade A3. The membranolytic activity of ESX-1 also caused leakage of cathepsin B into the cytosol where it promoted cell death, suggesting that the induction of type I IFN comes at the cost of lysosomal rupture and toxicity. However, the production of cytosolic serpins suppressed the protease activity of cathepsin B in this compartment and thus limited cell death, a function that was associated with increased bacterial growth in infected mice. These results suggest that cytosolic serpins act in a type I IFN-dependent cytoprotective feedback loop to counteract the inevitable toxic effect of ESX-1-mediated host membrane rupture. IMPORTANCE: The ESX-1 type VII secretion system is a key virulence determinant of pathogenic mycobacteria. The ability to permeabilize host cell membranes is critical for several ESX-1-dependent virulence traits, including phagosomal escape and induction of the type I interferon (IFN) response. We find that it comes at the cost of lysosomal leakage and subsequent host cell death. However, our results suggest that ESX-1-mediated type I IFN signaling selectively upregulates serpina3f and serpina3g and that these cytosolic serpins limit cell death caused by cathepsin B that has leaked into the cytosol, a function that is associated with increased bacterial growth in vivo. The ability to rupture host membranes is widespread among bacterial pathogens, and it will be of interest to evaluate the role of cytosolic serpins and this type I IFN-dependent cytoprotective feedback loop in the context of human infection.


Asunto(s)
Proteínas Bacterianas , Citosol , Interferón Tipo I , Macrófagos , Mycobacterium marinum , Serpinas , Animales , Femenino , Ratones , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Muerte Celular , Citosol/microbiología , Citosol/metabolismo , Retroalimentación Fisiológica , Interacciones Huésped-Patógeno , Interferón Tipo I/metabolismo , Macrófagos/microbiología , Ratones Endogámicos C57BL , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/patogenicidad , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Serpinas/metabolismo , Serpinas/genética , Transducción de Señal , Sistemas de Secreción Tipo VII/metabolismo , Sistemas de Secreción Tipo VII/genética
2.
Proc Natl Acad Sci U S A ; 117(2): 1160-1166, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31879349

RESUMEN

Following mycobacterial entry into macrophages the ESX-1 type VII secretion system promotes phagosomal permeabilization and type I IFN production, key features of tuberculosis pathogenesis. The current model states that the secreted substrate ESAT-6 is required for membrane permeabilization and that a subsequent passive leakage of extracellular bacterial DNA into the host cell cytosol is sensed by the cyclic GMP-AMP synthase (cGAS) and stimulator of IFN genes (STING) pathway to induce type I IFN production. We employed a collection of Mycobacterium marinum ESX-1 transposon mutants in a macrophage infection model and show that permeabilization of the phagosomal membrane does not require ESAT-6 secretion. Moreover, loss of membrane integrity is insufficient to induce type I IFN production. Instead, type I IFN production requires intact ESX-1 function and correlates with release of mitochondrial and nuclear host DNA into the cytosol, indicating that ESX-1 affects host membrane integrity and DNA release via genetically separable mechanisms. These results suggest a revised model for major aspects of ESX-1-mediated host interactions and put focus on elucidating the mechanisms by which ESX-1 permeabilizes host membranes and induces the type I IFN response, questions of importance for our basic understanding of mycobacterial pathogenesis and innate immune sensing.


Asunto(s)
Antígenos Bacterianos/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Interferón Tipo I/metabolismo , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Mycobacterium marinum/patogenicidad , Fagosomas/metabolismo , Antígenos Bacterianos/genética , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Mitocondrias/metabolismo , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/genética , Mycobacterium marinum/inmunología , Mycobacterium marinum/metabolismo , Tuberculosis/inmunología , Sistemas de Secreción Tipo VII
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA