Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 597: 115-121, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35134609

RESUMEN

Radiotherapy is commonly used to treat oral squamous cell carcinoma (OSCC), and radioresistance is a critical factor resulting in poor outcomes. Several genes have been reported to be therapeutic targets for radioresistance; however, the involvement of chromatin accessibility in radioresistance has not been clarified in OSCC cells. Accordingly, in this study, we evaluated chromatin accessibility in radioresistant (HSC-3) and radiosensitive (KOSC-2) cells, identified from nine OSCC cell lines using clonogenic survival assays after irradiation. Chromatin accessibility in radioresistant OSCC cells was assessed using assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). Gene expression was evaluated by quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) and immunoblot analysis. Viability was assessed by MTS assay. We found 1273 peaks (open chromatin regions by ATAC-seq) related to 8 Gy irradiation in HSC-3 but not KOSC-2 cells, among which 235 genes located around the chromatin open peaks were identified by ChIPpeakAnno analysis. Subsequently, 12 genes were selected as signal transduction-related genes by Gene Ontology analysis, and gene expression was confirmed by RT-qPCR. Among these genes, adenylate cyclase 2 (ADCY2) was significantly upregulated after treatment with irradiation in HSC-3 but not KOSC-2 cells. To further evaluate ADCY2 function in radioresistant cells, we performed ADCY2 knockdown by transfection of HSC-3 cells with small interfering RNA (siADCY2). Cell viability after irradiation was significantly decreased in siADCY2-transfected cells compared with that in control cells. These results suggested that ADCY2 expression was related to the open chromatin region in radioresistant OSCC cells and that ADCY2 may have therapeutic efficacy when used in combination with radiotherapy in patients with OSCC.

2.
Cancers (Basel) ; 13(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34944919

RESUMEN

The platelet-activating factor receptor (PAFR) is a key molecule that participates in intracellular signaling pathways, including regulating the activation of kinases. It is involved in cancer progression, but the detailed mechanism of its chemosensitivity is unknown. The purpose of the current study was to elucidate the mechanism regulating cisplatin (CDDP) sensitivity through PAFR functions in oral squamous cell carcinoma (OSCC). We first analyzed the correlation between PAFR expression and CDDP sensitivity in seven OSCC-derived cell lines based upon cell viability assays. Among them, we isolated 2 CDDP-resistant cell lines (Ca9-22 and Ho-1-N-1). In addition to conducting PAFR-knockdown (siPAFR) experiments, we found that ginkgolide B (GB), a specific inhibitor of PAFR, enhanced both CDDP chemosusceptibility and apoptosis. We next evaluated the downstream signaling pathway of PAFR in siPAFR-treated cells and GB-treated cells after CDDP treatment. In both cases, we observed decreased phosphorylation of ERK and Akt and increased expression of cleaved caspase-3. These results suggest that PAFR is a therapeutic target for modulating CDDP sensitivity in OSCC cells. Thus, GB may be a novel drug that could enhance combination chemotherapy with CDDP for OSCC patients.

3.
Sci Rep ; 11(1): 5897, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33723306

RESUMEN

Exosomes are involved in a wide range of biological processes in human cells. Considerable evidence suggests that engineered exosomes (eExosomes) containing therapeutic agents can attenuate the oncogenic activity of human cancer cells. Despite its biomedical relevance, no information has been available for oral squamous cell carcinoma (OSCC), and therefore the development of specific OSCC-targeting eExosomes (octExosomes) is urgently needed. We demonstrated that exosomes from normal fibroblasts transfected with Epstein-Barr Virus Induced-3 (EBI3) cDNA were electroporated with siRNA of lymphocyte cytoplasmic protein 1 (LCP1), as octExosomes, and a series of experiments were performed to evaluate the loading specificity/effectiveness and their anti-oral cancer cell activities after administration of octExosomes. These experiments revealed that octExosomes were stable, effective for transferring siLCP1 into OSCC cells and LCP1 was downregulated in OSCC cells with octExosomes as compared with their counterparts, leading to a significant tumor-suppressive effect in vitro and in vivo. Here we report the development of a new valuable tool for inhibiting tumor cells. By engineering exosomes, siLCP1 was transferred to specifically suppress oncogenic activity of OSCC cells. Inhibition of other types of human malignant cells merits further study.


Asunto(s)
Progresión de la Enfermedad , Exosomas/metabolismo , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Interferencia de ARN , Animales , Línea Celular Tumoral , Exosomas/ultraestructura , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA