Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain ; 147(6): 2053-2068, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38739752

RESUMEN

Aggregation of the RNA-binding protein TAR DNA binding protein (TDP-43) is a hallmark of TDP-proteinopathies including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). As TDP-43 aggregation and dysregulation are causative of neuronal death, there is a special interest in targeting this protein as a therapeutic approach. Previously, we found that TDP-43 extensively co-aggregated with the dual function protein GEF (guanine exchange factor) and RNA-binding protein rho guanine nucleotide exchange factor (RGNEF) in ALS patients. Here, we show that an N-terminal fragment of RGNEF (NF242) interacts directly with the RNA recognition motifs of TDP-43 competing with RNA and that the IPT/TIG domain of NF242 is essential for this interaction. Genetic expression of NF242 in a fruit fly ALS model overexpressing TDP-43 suppressed the neuropathological phenotype increasing lifespan, abolishing motor defects and preventing neurodegeneration. Intracerebroventricular injections of AAV9/NF242 in a severe TDP-43 murine model (rNLS8) improved lifespan and motor phenotype, and decreased neuroinflammation markers. Our results demonstrate an innovative way to target TDP-43 proteinopathies using a protein fragment with a strong affinity for TDP-43 aggregates and a mechanism that includes competition with RNA sequestration, suggesting a promising therapeutic strategy for TDP-43 proteinopathies such as ALS and FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido , Fenotipo , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ratones , Humanos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Drosophila , Ratones Transgénicos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Masculino
2.
Nat Commun ; 13(1): 1550, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322029

RESUMEN

RCOR1 is a known transcription repressor that recruits and positions LSD1 and HDAC1/2 on chromatin to erase histone methylation and acetylation. However, there is currently an incomplete understanding of RCOR1's range of localization and function. Here, we probe RCOR1's distribution on a genome-wide scale and unexpectedly find that RCOR1 is predominantly associated with transcriptionally active genes. Biochemical analysis reveals that RCOR1 associates with RNA Polymerase II (POL-II) during transcription and deacetylates its carboxy-terminal domain (CTD) at lysine 7. We provide evidence that this non-canonical RCOR1 activity is linked to dampening of POL-II productive elongation at actively transcribing genes. Thus, RCOR1 represses transcription in two ways-first, via a canonical mechanism by erasing transcriptionally permissive histone modifications through associating with HDACs and, second, via a non-canonical mechanism that deacetylates RNA POL-II's CTD to inhibit productive elongation. We conclude that RCOR1 is a transcription rheostat.


Asunto(s)
Cromatina , ARN Polimerasa II , Acetilación , Cromatina/genética , Metilación , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética
3.
Biochem Biophys Rep ; 25: 100889, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33426312

RESUMEN

Epilepsy is a neurological disorder of genetic or environmental origin characterized by recurrent spontaneous seizures. A rodent model of temporal lobe epilepsy is induced by a single administration of pilocarpine, a non-selective cholinergic muscarinic receptor agonist. The molecular changes associated with pilocarpine-induced seizures are still poorly described. Epigenetic multiprotein complexes that regulate gene expression by changing the structure of chromatin impose transcriptional memories. Among the epigenetic enzymes relevant to the epileptogenic process is lysine-specific demethylase 1 (LSD1, KDM1A), which regulates the expression of genes that control neuronal excitability. LSD1 forms complexes with the CoREST family of transcriptional corepressors, which are molecular bridges that bring HDAC1/2 and LSD1 enzymes to deacetylate and demethylate the tail of nucleosomal histone H3. To test the hypothesis that LSD1-complexes are involved in initial modifications associated with pilocarpine-induced epilepsy, we studied the expression of main components of LSD1-complexes and the associated epigenetic marks on isolated neurons and the hippocampus of pilocarpine-treated mice. Using a single injection of 300 mg/kg of pilocarpine and after 24 h, we found that protein levels of LSD1, CoREST2, and HDAC1/2 increased, while CoREST1 decreased in the hippocampus. In addition, we observed increased histone H3 lysine 9 di- and trimethylation (H3K9me2/3) and decreased histone H3 lysine 4 di and trimethylation (H3K4me2/3). Similar findings were observed in cultured hippocampal neurons and HT-22 hippocampal cell line treated with pilocarpine. In conclusion, our data show that muscarinic receptor activation by pilocarpine induces a global repressive state of chromatin and prevalence of LSD1-CoREST2 epigenetic complexes, modifications that could underlie the pathophysiological processes leading to epilepsy.

4.
Int J Neuropsychopharmacol ; 23(2): 108-116, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31800046

RESUMEN

BACKGROUND: Basolateral amygdalar projections to the prefrontal cortex play a key role in modulating behavioral responses to stress stimuli. Among the different neuromodulators known to impact basolateral amygdalar-prefrontal cortex transmission, the corticotrophin releasing factor (CRF) is of particular interest because of its role in modulating anxiety and stress-associated behaviors. While CRF type 1 receptor (CRFR1) has been involved in prefrontal cortex functioning, the participation of CRF type 2 receptor (CRFR2) in basolateral amygdalar-prefrontal cortex synaptic transmission remains unclear. METHODS: Immunofluorescence anatomical studies using rat prefrontal cortex synaptosomes devoid of postsynaptic elements were performed in rats with intra basolateral amygdalar injection of biotinylated dextran amine. In vivo microdialysis and local field potential recordings were used to measure glutamate extracellular levels and changes in long-term potentiation in prefrontal cortex induced by basolateral amygdalar stimulation in the absence or presence of CRF receptor antagonists. RESULTS: We found evidence for the presynaptic expression of CRFR2 protein and mRNA in prefrontal cortex synaptic terminals originated from basolateral amygdalar. By means of microdialysis and electrophysiological recordings in combination with an intra-prefrontal cortex infusion of the CRFR2 antagonist antisauvagine-30, we were able to determine that CRFR2 is functionally positioned to limit the strength of basolateral amygdalar transmission to the prefrontal cortex through presynaptic inhibition of glutamate release. CONCLUSIONS: Our study shows for the first time to our knowledge that CRFR2 is expressed in basolateral amygdalar afferents projecting to the prefrontal cortex and exerts an inhibitory control of prefrontal cortex responses to basolateral amygdalar inputs. Thus, changes in CRFR2 signaling are likely to disrupt the functional connectivity of the basolateral amygdalar-prefrontal cortex pathway and associated behavioral responses.


Asunto(s)
Complejo Nuclear Basolateral/fisiología , Ácido Glutámico/metabolismo , Potenciación a Largo Plazo/fisiología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Corteza Prefrontal/fisiología , Receptores de Hormona Liberadora de Corticotropina/fisiología , Transmisión Sináptica/fisiología , Animales , Complejo Nuclear Basolateral/metabolismo , Masculino , Red Nerviosa/metabolismo , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina/metabolismo
5.
Int J Neuropsychopharmacol ; 20(8): 660-669, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28531297

RESUMEN

Background: Increased locomotor activity in response to the same stimulus is an index of behavioral sensitization observed in preclinical models of drug addiction and compulsive behaviors. Repeated administration of quinpirole, a D2/D3 dopamine agonist, induces locomotor sensitization. This effect is potentiated and accelerated by co-administration of U69593, a kappa opioid receptor agonist. The mechanism underlying kappa opioid receptor potentiation of quinpirole-induced locomotor sensitization remains to be elucidated. Methods: Immunofluorescence anatomical studies were undertaken in mice brain slices and rat presynaptic synaptosomes to reveal kappa opioid receptor and D2R pre- and postsynaptic colocalization in the nucleus accumbens. Tonic and phasic dopamine release in the nucleus accumbens of rats repeatedly treated with U69593 and quinpirole was assessed by microdialysis and fast scan cyclic voltammetry. Results: Anatomical data show that kappa opioid receptor and D2R colocalize postsynaptically in medium spiny neurons of the nucleus accumbens and the highest presynaptic colocalization occurs on the same dopamine terminals. Significantly reduced dopamine levels were observed in quinpirole, and U69593-quinpirole treated rats, explaining sensitization of D2R. Presynaptic inhibition induced by kappa opioid receptor and D2R of electrically evoked dopamine release was faster in U69593-quinpirole compared with quinpirole-repeatedly treated rats. Conclusions: Pre- and postsynaptic colocalization of kappa opioid receptor and D2R supports a role for kappa opioid receptor potentiating both the D2R inhibitory autoreceptor function and the inhibitory action of D2R on efferent medium spiny neurons. Kappa opioid receptor co-activation accelerates D2R sensitization by contributing to decrease dopamine release in the nucleus accumbens.


Asunto(s)
Agonistas de Dopamina/farmacología , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Quinpirol/farmacología , Receptores de Dopamina D2/metabolismo , Receptores Opioides kappa/metabolismo , Analgésicos Opioides/farmacología , Animales , Bencenoacetamidas/farmacología , Dopamina/metabolismo , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Masculino , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Núcleo Accumbens/citología , Núcleo Accumbens/metabolismo , Pirrolidinas/farmacología , Ratas Sprague-Dawley , Receptores de Dopamina D2/agonistas , Receptores Opioides kappa/agonistas , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Técnicas de Cultivo de Tejidos
6.
Eur J Neurosci ; 43(2): 220-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26503565

RESUMEN

There is significant functional evidence showing that corticotropin-releasing factor type-2 receptor (CRF2R) and corticotropin-releasing factor-binding protein (CRF-BP) regulate glutamatergic synapses onto ventral tegmental area (VTA) dopaminergic neurons. It has been shown that CRF requires CRF-BP to potentiate N-methyl-D-aspartate receptors in dopaminergic neurons through CRF2R, and that increases glutamate release in cocaine-treated rats through the activation of CRF2R only by agonists with high affinity to CRF-BP. Furthermore, this CRF-mediated increase in VTA glutamate is responsible for stress-induced relapse to cocaine-seeking behaviour. However, there is a lack of anatomical evidence to explain the mechanisms of CRF actions in VTA. Thus, it was studied whether CRF2R and CRF-BP are expressed in VTA nerve terminals, using a synaptosomal preparation devoid of postsynaptic elements. The current results show that both proteins are co-expressed in glutamatergic and γ-aminobutyric acid (GABA)ergic VTA synaptosomes. A main glutamatergic input to the VTA that has been associated to addictive behaviour is originated in the lateral hypothalamic area (LHA). Thus, this study was focused in the LHA-VTA input using orexin as a marker of this input. The results show that CRF2R and CRF-BP mRNA and protein are expressed in the LHA, and that both proteins are present in orexin-positive VTA synaptosomes. The results showing that CRF2R and CRF-BP are expressed in the LHA-VTA input give anatomical support to suggest that this input plays a role in stress-induced relapse to cocaine-seeking behaviour.


Asunto(s)
Proteínas Portadoras/metabolismo , Área Hipotalámica Lateral/metabolismo , Neuronas/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Sinapsis/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Axones/metabolismo , Ácido Glutámico/metabolismo , Masculino , Orexinas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Sinaptosomas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
7.
Thyroid ; 22(9): 951-63, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22870949

RESUMEN

BACKGROUND: Adult hypothyroidism is a highly prevalent condition that impairs processes, such as learning and memory. Even though tetra-iodothyronine (T(4)) treatment can overcome the hypothyroidism in the majority of cases, it cannot fully recover the patient's learning capacity and memory. In this work, we analyzed the cellular and molecular changes in the adult brain occurring with the development of experimental hypothyroidism. METHODS: Adult male Sprague-Dawley rats were treated with 6-propyl-2-thiouracil (PTU) for 20 days to induce hypothyroidism. Neuronal and astrocyte apoptosis were analyzed in the hippocampus of control and hypothyroid adult rats by confocal microscopy. The content of brain-derived neurotrophic factor (BDNF) was analyzed using enzyme-linked immunosorbent assay (ELISA) and in situ hybridization. The glutamatergic synapse and the postsynaptic density (PSD) were analyzed by electron microscopy. The content of PSD proteins like tyrosine receptor kinase B (TrkB), p75, and N-methyl-D-aspartate receptor (NMDAr) were analyzed by immunoblot. RESULTS: We observed that the hippocampus of hypothyroid adult rats displayed increased apoptosis levels in neurons and astrocyte and reactive gliosis compared with controls. Moreover, we found that the amount of BDNF mRNA was higher in the hippocampus of hypothyroid rats and the content of TrkB, the receptor for BDNF, was reduced at the PSD of the CA3 region of hypothyroid rats, compared with controls. We also observed that the glutamatergic synapses from the stratum radiatum of CA3 from hypothyroid rats, contained thinner PSDs than control rats. This observation was in agreement with a reduced content of NMDAr subunits at the PSD in hypothyroid animals. CONCLUSIONS: Our data suggest that adult hypothyroidism affects the hippocampus by a mechanism that alters the composition of PSD, reduces neuronal and astrocyte survival, and alters the content of the signaling neurotrophic factors, such as BDNF.


Asunto(s)
Astrocitos/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Gliosis/patología , Hipotiroidismo/complicaciones , Neuronas/patología , Densidad Postsináptica/patología , Animales , Antitiroideos/efectos adversos , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/análisis , Gliosis/inducido químicamente , Hipocampo/química , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/ultraestructura , Hipotiroidismo/inducido químicamente , Masculino , Neuronas/efectos de los fármacos , Densidad Postsináptica/química , Densidad Postsináptica/efectos de los fármacos , Propiltiouracilo/efectos adversos , Ratas , Ratas Sprague-Dawley , Receptor trkB/análisis , Receptores de N-Metil-D-Aspartato/análisis
8.
Neurotox Res ; 20(3): 289-300, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21442465

RESUMEN

The transcription factor Nur77 has been identified as a neuronal activation marker of stressful stimuli in the central nervous system. Nur77 plays a key role at all levels of the hypothalamus-pituitary-adrenal axis during the stress response. However, the participation of Nur77 in extra-hypothalamic responses to stress is unknown. In this study, we studied the impact of acute and repeated immobilization stress on Nur77 expression in the bed nucleus of stria terminalis (BNST), a region involved in autonomic, neuroendocrine, and behavioral responses to stress. After a single session of immobilization stress we observed a significant increase of Nur77-like immunoreactivity in the BNST. This effect is not lost with repeated exposure to stress, since Nur77-like immunoreactivity and Nur77 mRNA in BNST were increased after the fifteenth stress session. The administration of desipramine, a specific inhibitor of noradrenaline reuptake, prevented the increase in Nur77-like immunoreactivity and mRNA induced by stress in rats subjected to repeated exposure to immobilization stress. Our results show that acute and repeated stress modulates Nur77 expression in BNST and suggest that Nur77 participates in extra-hypothalamic responses to stress.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Inmovilización/efectos adversos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Núcleos Septales/metabolismo , Estrés Psicológico/etiología , Estrés Psicológico/patología , Análisis de Varianza , Animales , Colchicina/farmacología , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Moduladores de Tubulina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...