Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Orphanet J Rare Dis ; 17(1): 348, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071499

RESUMEN

Fibrodysplasia ossificans progressiva (FOP) is an ultrarare condition and one of the most impactful disorders associated with progressive heterotopic ossification events. It is estimated that there are 120-150 patients in Brazil; however, currently, fewer than 100 patients have been identified, and the role of a FOP advocacy group (FOP Brazil) has been instrumental for the identification and follow-up of these individuals and families. The aim of this article is to summarize the current status of FOP in Brazil and describe strategies proposed to approach this challenge in a continental size country.


Asunto(s)
Miositis Osificante , Osificación Heterotópica , Brasil/epidemiología , Humanos
2.
J Periodontal Res ; 57(5): 1014-1023, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35930685

RESUMEN

OBJECTIVE: To define the potential of polycaprolactone (PCL) scaffold for cementoblast delivery. BACKGROUND: Dental cementum is critical for tooth attachment and position, and its regenerative capabilities remain unpredictable. METHODS: PCL scaffolds were manufactured by the electrospinning technique at 10% and 20% (w/v) and seeded with cementoblasts (OCCM-30). Scaffolds were characterized for their morphology and biological performance by scanning electron microscopy (SEM), confocal and conventional histology, cytocompatibility (PrestoBlue assay), gene expression (type I collagen - Col1; bone sialoprotein - Bsp; runt-related transcription factor 2 - Runx-2; alkaline phosphatase - Alpl; osteopontin - Opn; osteocalcin - Ocn, osterix - Osx), and the potential to induce extracellular matrix deposition and mineralization in vitro. RESULTS: Overall, data analysis showed that PCL scaffolds allowed cell adhesion and proliferation, modulated the expression of key markers of cementoblasts, and led to enhanced extracellular matrix deposition and calcium deposition as compared to the control group. CONCLUSION: Altogether, our findings allow concluding that PCL scaffolds are a viable tool to culture OCCM-30 cells, leading to an increased potential to promote mineralization in vitro. Further studies should be designed in order to define the clinical relevance of cementoblast-loaded PCL scaffolds to promote new cementum formation.


Asunto(s)
Materiales Biocompatibles , Cemento Dental , Diferenciación Celular , Sialoproteína de Unión a Integrina/metabolismo , Poliésteres , Andamios del Tejido
3.
Differentiation ; 124: 17-27, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35151064

RESUMEN

Periodontal dental ligament (PDL) is composed of heterogeneous population of mesenchymal progenitor cells. The mechanisms that regulate the differentiation of these cells towards osteoblast/cementoblast phenotype are not fully understood. Some studies have demonstrated that is possible to change the pattern of cell differentiation via epigenetic mechanisms. The proposal of this study was to investigate whether 5-aza-2'-deoxycytidine (5-aza-dC) treatment would stimulate the osteoblast/cementoblast differentiation of periodontal ligament mesenchymal progenitor cells (PDL-CD105+ enriched cells), characterized as low osteoblast potential, through bone morphogenetic protein-2 (BMP-2) modulation. PDL-CD105+ cells from a single donor were cloned and characterized in two populations as high osteoblast/cementoblast potential (HOP) and low osteoblast/cementoblast potential (LOP) by mineralization in vitro and expression of osteogenic gene markers, such as runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteocalcin (OCN), bone morphogenetic protein 2 (BMP-2) and asporin (ASPN). Next, two LOP clones (L1 and L2) were pretreated with 5-aza-dC (10 µM) for 48 h, cultured under osteogenic condition and evaluated for mineralized matrix in vitro, transcription modulation of osteogenic gene markers, methylated and hydroxymethylated DNA levels of BMP-2 and ASPN and intracellular/extracellular expression of BMP-2 protein. LOP clones showed high expression of ASPN transcripts associated with low mRNA levels of BMP-2, RUNX2, ALP, and OCN. 5-aza-dC treatment raised hydroxymethylated DNA levels of BMP-2 and increased the expression of BMP-2 transcripts in both LOP clones. However, BMP-2 protein (intracellular and secreted forms) was detected only in L1 cell clones, in which it was observed an increased expression of osteoblast/cementoblast markers (RUNX2, ALP, OCN) associated with higher mineralization in vitro. In L2 cell clones, 5-aza-dC increased gene expression of ASPN, with no great change in for osteoblast/cementoblast differentiation potential. These data show that 5-aza-dC improves osteoblast/cementoblast differentiation of PDL-CD105+ cells via BMP-2 secretion, and this effect depends on low levels of ASPN expression.


Asunto(s)
Proteína Morfogenética Ósea 2 , Células Madre Mesenquimatosas , Fosfatasa Alcalina , Azacitidina/farmacología , Proteína Morfogenética Ósea 2/genética , Diferenciación Celular/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Cemento Dental , Ligamentos , Osteoblastos , Osteocalcina , Ligamento Periodontal
4.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613725

RESUMEN

The goal of this study was to perform a clinical and molecular investigation in an eight-year-old female child diagnosed with hypophosphatasia (HPP). The proband and her family were evaluated by medical and dental histories, biochemical analyses, radiographic imaging, and genetic analysis of the tissue-nonspecific alkaline phosphatase (ALPL) gene. A bioinformatic analysis was performed to predict the structural and functional impact of the point mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) molecule and to define their potential contribution to the phenotype. We identified a novel combination of heterozygous ALPL missense variants in the proband, p.Ala33Val and p.Asn47His, compatible with an autosomal recessive mode of inheritance and resulting in skeletal and dental phenotypes. Computational modeling showed that the affected Asn47 residue is located in the coil structure close to the N-terminal α-helix, whereas the affected Ala33 residue is localized in the N-terminal α-helix. Both affected residues are located close to the homodimer interface, suggesting they may impair TNSALP dimer formation and stability. Clinical and biochemical follow-up revealed improvements after six years of ERT. Reporting this novel combination of ALPL variants in childhood HPP provides new insights into genotype-phenotype associations for HPP and specific sites within the TNSALP molecule potentially related to a childhood-onset HPP and skeletal and dental manifestations. Beneficial effects of ERT are implicated in skeletal and dental tissues.


Asunto(s)
Fosfatasa Alcalina , Hipofosfatasia , Femenino , Humanos , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/química , Hipofosfatasia/genética , Mutación Missense , Niño
5.
Bone ; 153: 116139, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34364013

RESUMEN

Cementum is a mineralized tissue that covers tooth roots and functions in the periodontal attachment complex. Cementocytes, resident cells of cellular cementum, share many characteristics with osteocytes, are mechanoresponsive cells that direct bone remodeling based on changes in loading. We hypothesized that cementocytes play a key role during orthodontic tooth movement (OTM). To test this hypothesis, we used 8-week-old male Wistar rats in a model of OTM for 2, 7, or 14 days (0.5 N), whereas unloaded contralateral teeth served as controls. Tissue and cell responses were analyzed by high-resolution micro-computed tomography, histology, tartrate-resistant acid phosphatase staining for odontoclasts/osteoclasts, and transmission electron microscopy. In addition, laser capture microdissection was used to collect cellular cementum, and extracted proteins were identified by liquid chromatography coupled to tandem mass spectrometry. The OTM model successfully moved first molars mesially more than 250 µm by 14 days introducing apoptosis in a small number of cementocytes and areas of root resorption on mesial and distal aspects. Cementocytes showed increased nuclear size and proportion of euchromatin suggesting cellular activity. Proteomic analysis identified 168 proteins in cellular cementum with 21 proteins found only in OTM sites and 54 proteins only present in control samples. OTM-down-regulated several extracellular matrix proteins, including decorin, biglycan, asporin, and periostin, localized to cementum and PDL by immunostaining. Furthermore, type IV collagen (COL14A1) was the protein most down-regulated (-45-fold) by OTM and immunolocalized to cells at the cementum-dentin junction. Eleven keratins were significantly increased by OTM, and a pan-keratin antibody indicated keratin localization primarily in epithelial remnants of Hertwig's epithelial root sheath. These experiments provide new insights into biological responses of cementocytes and cellular cementum to OTM.


Asunto(s)
Proteoma , Técnicas de Movimiento Dental , Animales , Cemento Dental , Masculino , Osteoclastos , Proteómica , Ratas , Ratas Wistar , Raíz del Diente , Microtomografía por Rayos X
6.
DNA Cell Biol ; 40(5): 662-674, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33751901

RESUMEN

Periodontal ligament cells (PDLCs) have well documented osteogenic potential; however, this commitment can be highly heterogenous, limiting their applications in tissue regeneration. In this study, we use PDLC populations characterized by high and low osteogenic potential (h-PDLCs and l-PDLCs, respectively) to identify possible sources of such heterogeneity and to investigate whether the osteogenic differentiation can be enhanced by epigenetic modulation. In h-PDLCs, low basal expression levels of pluripotency markers (NANOG, OCT4), DNA methyltransferases (DNMT1, DNMT3B), and enzymes involved in active DNA demethylation (TET1, TET3) were prerequisite to high osteogenic potential. Furthermore, these genes were downregulated upon early osteogenesis, possibly allowing for the increase in expression of the key osteogenic transcription factors, Runt-related transcription factor 2 (RUNX2) and SP7, and ultimately, mineral nodule formation. l-PDLCs appeared locked in the multipotent state and this was further enhanced upon early osteogenic stimulation, correlating with low RUNX2 expression and impaired mineralization. Further upregulation of DNMTs was also evident, while pretreatment with RG108, the DNMTs' inhibitor, enhanced the osteogenic program in l-PDLCs through downregulation of DNMTs, increased RUNX2 expression and nuclear localization, accelerated expression of osteogenic markers, and increased mineralization. These findings point toward the role of DNMTs and Ten Eleven Translocations (TETs) in osteogenic commitment and support application of epigenetic approaches to modulate biomineralization in PDLCs.


Asunto(s)
Calcificación Fisiológica , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Ligamento Periodontal/citología , Calcificación Fisiológica/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Humanos , Osteogénesis/genética , Ftalimidas/farmacología , Triptófano/análogos & derivados , Triptófano/farmacología , Regulación hacia Arriba/efectos de los fármacos , Adulto Joven
7.
Mater Sci Eng C Mater Biol Appl ; 118: 111438, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33255031

RESUMEN

Photofunctionalization mediated by ultraviolet (UV) light seems to be a promising approach to improve the physico-chemical characteristics and the biological response of titanium (Ti) dental implants. Seeing that photofunctionalization is able to remove carbon from the surface, besides to promote reactions on the titanium dioxide (TiO2) layer, coating the Ti with a stable TiO2 film could potentialize the UV effect. Thus, here we determined the impact of UV-photofunctionalized mixed-phase (anatase and rutile) TiO2 films on the physico-chemical properties of Ti substrate and cell biology. Mixed-phase TiO2 films were grown by radiofrequency magnetron sputtering on commercially pure titanium (cpTi) discs, and samples were divided as follow: cpTi (negative control), TiO2 (positive control), cpTi UV, TiO2 UV (experimental). Photofunctionalization was performed using UVA (360 nm - 40 W) and UVC (250 nm - 40 W) lamps for 48 h. Surfaces were analyzed in terms of morphology, topography, chemical composition, crystalline phase, wettability and surface free energy. Pre-osteoblastic cells (MC3T3E1) were used to assess cell morphology and adhesion, metabolism, mineralization potential and cytokine secretion (IFN-γ, TNF-α, IL-4, IL-6 and IL-17). TiO2-coated surfaces exhibited granular surface morphology and greater roughness. Photofunctionalization increased wettability (p < 0.05) and surface free energy (p < 0.001) on both surface conditions. TiO2-treated groups featured normal cell morphology and spreading, and greater cellular metabolic activity at 2 and 4 days (p < 0.05), whereas UV-photofunctionalized surfaces enhanced cell metabolism, cell adhered area, and calcium deposition (day 14) (p < 0.05). In general, assessed proteins were found slightly affected by either UV or TiO2 treatments. Altogether, our findings suggest that UV-photofunctionalized TiO2 surface has the potential to improve pre-osteoblastic cell differentiation and the ability of cells to form mineral nodules by modifying Ti physico-chemical properties towards a more stable context. UV-modified surfaces modulate the secretion of key inflammatory markers.


Asunto(s)
Citocinas , Osteoblastos , Células 3T3-L1 , Animales , Comunicación Celular , Ratones , Propiedades de Superficie , Titanio/farmacología , Rayos Ultravioleta
8.
J Periodontal Res ; 56(1): 173-185, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33210734

RESUMEN

BACKGROUND AND OBJECTIVES: Dental cementum (DC) is a mineralized tissue covering tooth roots that plays a critical role in dental attachment. Differences in deciduous vs. permanent tooth DC have not been explored. We hypothesized that proteomic analysis of DC matrix would identify compositional differences in deciduous (DecDC) vs. permanent (PermDC) cementum that might reflect physiological or pathological differences, such as root resorption that is physiological in deciduous teeth but can be pathological in the permanent dentition. METHODS: Protein extracts from deciduous (n = 25) and permanent (n = 12) teeth were pooled (five pools of DecDC, five teeth each; four pools of PermDC, three teeth each). Samples were denatured, and proteins were extracted, reduced, alkylated, digested, and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). The beta-binomial statistical test was applied to normalized spectrum counts with 5% significance level to determine differentially expressed proteins. Immunohistochemistry was used to validate selected proteins. RESULTS: A total of 510 proteins were identified: 123 (24.1%) exclusive to DecDC; 128 (25.1%) exclusive to PermDC; 259 (50.8%) commonly expressed in both DecDC and PermDC. Out of 60 differentially expressed proteins, 17 (28.3%) were detected in DecDC, including myeloperoxidase (MPO), whereas 43 (71.7%) were detected in PermDC, including decorin (DCN) and osteocalcin (BGLAP). Overall, Gene Ontology (GO) analysis indicated that all expressed proteins were related to GO biological processes that included localization and response to stress, and the GO molecular function of differentially expressed proteins was enriched in cell adhesion, molecular binding, cytoskeletal protein binding, structural molecular activity, and macromolecular complex binding. Immunohistochemistry confirmed the trends for selected differentially expressed proteins in human teeth. CONCLUSIONS: Clear differences were found between the proteomes of DecDC and PermDC. These findings may lead to new insights into developmental differences between DecDC and PermDC, as well as to a better understanding of physiological/pathological events such as root resorption.


Asunto(s)
Cemento Dental , Dentición Permanente , Cromatografía Liquida , Humanos , Proteómica , Espectrometría de Masas en Tándem , Diente Primario
9.
ACS Appl Mater Interfaces ; 12(9): 10118-10129, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32049483

RESUMEN

Polymicrobial infections are one of the most common reasons for inflammation of surrounding tissues and failure of implanted biomaterials. Because microorganism adhesion is the first step for biofilm formation, physical-chemical modifications of biomaterials have been proposed to reduce the initial microbial attachment. Thus, the use of superhydrophobic coatings has emerged because of their anti-biofilm properties. However, these coatings on the titanium (Ti) surface have been developed mainly by dual-step surface modification techniques and have not been tested using polymicrobial biofilms. Therefore, we developed a one-step superhydrophobic coating on the Ti surface by using a low-pressure plasma technology to create a biocompatible coating that reduces polymicrobial biofilm adhesion and formation. The superhydrophobic coating on Ti was created by the glow discharge plasma using Ar, O2, and hexamethyldisiloxane gases, and after full physical, chemical, and biological characterizations, we evaluated its properties regarding oral biofilm inhibition. The newly developed coating presented an increased surface roughness and, consequently, superhydrophobicity (contact angle over 150°) and enhanced corrosion resistance (p < 0.05) of the Ti surface. Furthermore, proteomic analysis showed a unique pattern of protein adsorption on the superhydrophobic coating without drastically changing the biologic processes mediated by proteins. Additionally, superhydrophobic treatment did not present a cytotoxic effect on fibroblasts or reduction of proliferation; however, it significantly reduced (≈8-fold change) polymicrobial adhesion (bacterial and fungal) and biofilm formation in vitro. Interestingly, superhydrophobic coating shifted the microbiological profile of biofilms formed in situ in the oral cavity, reducing by up to ≈7 fold pathogens associated with the peri-implant disease. Thus, this new superhydrophobic coating developed by a one-step glow discharge plasma technique is a promising biocompatible strategy to drastically reduce microbial adhesion and biofilm formation on Ti-based biomedical implants.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Implantes Dentales/microbiología , Titanio/química , Animales , Adhesión Bacteriana , Biopelículas , Candida albicans/fisiología , Supervivencia Celular , Corrosión , Fibroblastos/citología , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Staphylococcus/fisiología , Propiedades de Superficie
10.
J Periodontol ; 91(2): 263-273, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31373687

RESUMEN

BACKGROUND: Aggressive periodontitis (AgP), currently periodontitis grade C, presents early onset, rapid progression, and a poorly established genetic association. Thus, this study aimed to identify genetic variants associated with AgP via whole exome sequencing (WES) through a familial screening approach. METHODS: WES was performed in two nuclear families, including a proband and a parent affected by AgP and an unaffected parent and sibling. Common variants among affected individuals, excluding those common to healthy people, from each family, composed the data set associated with AgP. In silico analysis evaluated the impact of each variant on protein structure and protein-protein interactions. Moreover, identified deleterious variants were validated in a populational analysis (n = 96). RESULTS: The missense single nucleotide variations (SNVs) rs142548867 in EEFSEC (c.668C>T), rs574301770 in ZNF136 (c.466C>G), and rs72821893 in KRT25 (c.800G>A) and the frameshift indels rs37146475 in GPRC6A (c.2323-2324insT) and c.1366_1372insGGAGCAG in ELN were identified in AgP and have a predicted functional impact on proteins. In silico analysis indicated that the indel in GPRC6A generates a loss of the C-terminal tail of the Gprca protein. Furthermore, this SNV was significantly associated with AgP in a population-based investigation. CONCLUSION: Novel frameshift variation in GPRC6A (c.2323-2324insT) was identified as a potential genetic alteration associated with AgP occurrence.


Asunto(s)
Periodontitis Agresiva , Genotipo , Humanos , Mutación , Polimorfismo de Nucleótido Simple
11.
Scand J Immunol ; 90(6): e12816, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31448837

RESUMEN

Generalized aggressive periodontitis (GAgP) presents a reduced response to non-surgical therapy. However, it is not clear if the initial clinical, microbiological or immunological characteristics are impacting the worse response to treatment. This study aimed to identify the predictive value of clinical, microbiological and immunological patterns on the clinical response to therapy in GAgP patients. Twenty-four GAgP patients were selected, and gingival crevicular fluid (GCF) and subgingival biofilm were collected. Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythia levels were evaluated by qPCR, and IL-1ß and IL-10 concentration by ELISA. Twelve patients were treated with SRP (scaling and root planning), and twelve with SRP plus 375 mg amoxicillin and 250 mg metronidazole (8/8 hours, 7 days) (SRP + AM). The clinical changes (Probing Pocket Depth [PPD] reduction and Clinical Attachment Level [CAL] gain) 6 months post-treatment were correlated to the initial clinical, inflammatory and microbiological variables using stepwise logistic regression (α = 5%). CAL gain at 6 months was 1.16 ± 0.77 for SRP and 1.74 ± 0.57 mm for SRP + AM (P > .05). PPD reduction was 1.96 ± 0.82 for SRP and 2.45 ± 0.77 mm for SRP + AM (P < .05). In the SRP group, IL-10 showed a predictive value for clinical response. The higher the IL-10 concentration at baseline, the higher the reduction in PPD at 6 months (P = .01, r = .68). However, when antimicrobials were administered, no significant influence was detected (P > .05). It can be concluded that the IL-10 levels in GFC act as a predictor of clinical response to GAgP. Moreover, the intake of antimicrobials appears to overlap the influence of the inflammatory response on clinical response to treatment. Clinical trial registration number: NCT03933501.


Asunto(s)
Periodontitis Agresiva/diagnóstico , Periodontitis Agresiva/metabolismo , Interleucina-10/metabolismo , Adulto , Periodontitis Agresiva/etiología , Periodontitis Agresiva/terapia , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Biomarcadores , Femenino , Líquido del Surco Gingival/metabolismo , Líquido del Surco Gingival/microbiología , Humanos , Masculino , Pronóstico , Aplanamiento de la Raíz/métodos , Resultado del Tratamiento , Adulto Joven
12.
Bone ; 125: 128-139, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31077853

RESUMEN

Hypophosphatasia (HPP) is an inherited metabolic disorder that causes defective skeletal and dental mineralization. HPP exhibits a markedly heterogeneous range of clinical manifestations caused by dysfunction of the tissue-nonspecific isozyme of alkaline phosphatase (TNSALP), resulting from loss-of-function mutations in the ALPL gene. HPP has been associated with predominantly missense mutations in ALPL, and a number of compound heterozygous genotypes have been identified. Here, we describe a case of a subject with adult-onset HPP caused by a novel combination of missense mutations p.Gly473Ser and p.Ala487Val, resulting in chronic musculoskeletal pain, myopathy, persistent fatigue, vomiting, and an uncommon dental phenotype of short-rooted permanent teeth. Pedigree and biochemical analysis indicated that severity of symptoms was correlated with levels of residual ALP activity, and co-segregated with the p.Gly473Ser missense mutation. Bioinformatic analysis to predict the structural and functional impact of each of the point mutations in the TNSALP molecule, and its potential contribution to the clinical symptoms, revealed that the affected Gly473 residue is localized in the homodimer interface and predicted to have a dominant negative effect. The affected Ala487 residue was predicted to bind to Tyr479, which is closely located the N-terminal α-helix of TNSALP monomer 2, suggesting that both changes may impair dimer stability and catalytic functions. In conclusion, these findings assist in defining genotype-phenotype associations for HPP, and further define specific sites within the TNSALP molecule potentially related to neuromuscular manifestations in adult HPP, allowing for a better understanding of HPP pathophysiology.


Asunto(s)
Hipofosfatasia/genética , Hipofosfatasia/patología , Mutación/genética , Adulto , Fosfatasa Alcalina/genética , Secuencia de Aminoácidos , Biología Computacional , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Adulto Joven
13.
J Periodontol ; 90(7): 775-787, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30499115

RESUMEN

BACKGROUND: Physiological roles for the periodontal ligament (PDL) include tooth eruption and anchorage, force absorption, and provision of proprioceptive information. Despite the advances in understanding the biology of PDL cells, there is a lack of information regarding the molecular signature of deciduous (DecPDL) and permanent (PermPDL) PDL tissues. Thus, the present study was designed to characterize the membrane proteome of DecPDL and PermPDL cells. METHODS: Primary PDL cells were obtained (n = 6) and a label-free quantitative proteome of cell membrane-enriched components was performed. Proteome findings were validated by quantitative polymerase chain reaction and Western blot assays in fresh human tissues (n = 8) and primary cell cultures (n = 6). In addition, confocal microscopy was used to verify the expression of target factors in the PDL cell cultures. RESULTS: Comparative gene ontology enrichment analysis evidenced that most stickling differences involved "endomembrane system" (PICALM, STX4, and LRP10), "hydrolase activity" (NCSTN and XRCC6), "protein binding" (PICALM, STX4, GPNMB, VASP, extended-synaptotagmin 2 [ESYT2], and leucine-rich repeat containing 15 [LRRC15]), and "isomerase activity" (FKBP8). Data are available via ProteomeXchange with identifier PXD010226. At the transcript level, high PICALM in DecPDL and ESYT2 and LRRC15 in PermPDL were confirmed in fresh PDL tissues. Furthermore, Western blot analysis confirmed increased levels of PICALM, LRRC15, and ESYT2 in cells and/or fresh tissues, and confocal microscopy confirmed the trends for PICALM and LRRC15 expression in PDL cells. CONCLUSION: We report the first comprehensive characterization of the membrane protein machinery of DecPDL and PermPDL cells, and together, we identified a distinct molecular signature for these cell populations, including unique proteins for DecPDL and PermPDL.


Asunto(s)
Ligamento Periodontal , Proteoma , Células Cultivadas , Dentición Permanente , Humanos , Autoantígeno Ku , Glicoproteínas de Membrana , Proteínas de Unión a Tacrolimus , Diente Primario
14.
PLoS One ; 13(12): e0207873, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30507955

RESUMEN

Human bone marrow-derived mesenchymal stem cells (hBMSCs) are important for tissue regeneration but their epigenetic regulation is not well understood. Here we investigate the ability of a non-nucleoside DNA methylation inhibitor, RG108 to induce epigenetic changes at both global and gene-specific levels in order to enhance mesenchymal cell markers, in hBMSCs. hBMSCs were treated with complete culture medium, 50 µM RG108 and DMSO for three days and subjected to viability and apoptosis assays, global and gene-specific methylation/hydroxymethylation, transcript levels' analysis of epigenetic machinery enzymes and multipotency markers, protein activities of DNMTs and TETs, immunofluorescence staining and western blot analysis for NANOG and OCT4 and flow cytometry for CD105. The RG108, when used at 50 µM, did not affect the viability, apoptosis and proliferation rates of hBMSCs or hydroxymethylation global levels while leading to 75% decrease in DNMTs activity and 42% loss of global DNA methylation levels. In addition, DNMT1 was significantly downregulated while TET1 was upregulated, potentially contributing to the substantial loss of methylation observed. Most importantly, the mesenchymal cell markers CD105, NANOG and OCT4 were upregulated being NANOG and OCT4 epigenetically modulated by RG108, at their gene promoters. We propose that RG108 could be used for epigenetic modulation, promoting epigenetic activation of NANOG and OCT4, without affecting the viability of hBMSCs. DMSO can be considered a modulator of epigenetic machinery enzymes, although with milder effect compared to RG108.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Ftalimidas/farmacología , Triptófano/análogos & derivados , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasa 1/genética , Endoglina/metabolismo , Epigénesis Genética/efectos de los fármacos , Humanos , Oxigenasas de Función Mixta/genética , Regiones Promotoras Genéticas/efectos de los fármacos , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Triptófano/farmacología
15.
Bone ; 101: 219-229, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28527949

RESUMEN

Proteomic analysis of extracellular matrices (ECM) of dentoalveolar tissues can provide insights into developmental, pathological, and reparative processes. However, targeted dissection of mineralized tissues, dental cementum (DC), alveolar bone (AB), and dentin (DE), presents technical difficulties. We demonstrate an approach combining EDTA decalcification and laser capture microdissection (LCM), followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), to analyze proteome profiles of these tissues. Using the LCM-LC-MS/MS approach, a total of 243 proteins was identified from all tissues, 193 proteins in DC, 147 in AB, and 135 proteins DE. Ninety proteins (37% of total) were common to all tissues, whereas 52 proteins (21%) were overlapping in only two. Also, 101 (42%) proteins were exclusively detected in DC (60), AB (15), or DE (26). Identification in all tissues of expected ECM proteins including collagen alpha-1(I) chain (COL1A1), collagen alpha-1(XII) chain (COL12A1), biglycan (BGN), asporin (ASPN), lumican (LUM), and fibromodulin (FMOD), served to validate the approach. Principal component analysis (PCA) and hierarchical clustering identified a high degree of similarity in DC and AB proteomes, whereas DE presented a distinct dataset. Exclusively and differentially identified proteins were detected from all three tissues. The protein-protein interaction network (interactome) of DC was notable for its inclusion of several indicators of metabolic function (e.g. mitochondrial proteins, protein synthesis, and calcium transport), possibly reflecting cementocyte activity. The DE proteome included known and novel mineralization regulators, including matrix metalloproteinase 20 (MMP-20), 5' nucleotidase (NT5E), and secreted phosphoprotein 24 (SPP-24 or SPP-2). Application of the LCM-LC-MS/MS approach to dentoalveolar tissues would be of value in many experimental designs, including developmental studies of transgenic animals, investigation of treatment effects, and identification of novel regenerative factors.


Asunto(s)
Proteómica/métodos , Animales , Cromatografía Liquida , Cemento Dental/metabolismo , Dentina/metabolismo , Matriz Extracelular/metabolismo , Ratones , Microdisección , Odontogénesis/genética , Odontogénesis/fisiología , Análisis de Componente Principal , Proteoma/análisis , Espectrometría de Masas en Tándem
16.
PLoS One ; 11(5): e0154957, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27149379

RESUMEN

It has been suggested that there are histological and functional distinctions between the periodontal ligament (PDL) of deciduous (DecPDL) and permanent (PermPDL) teeth. Thus, we hypothesized that DecPDL and PermPDL display differences in the constitutive expression of genes/proteins involved with PDL homeostasis. Primary PDL cell cultures were obtained for DecPDL (n = 3) and PermPDL (n = 3) to allow us to perform label-free quantitative secretome analysis. Although a highly similar profile was found between DecPDL and PermPDL cells, comparative secretome analysis evidenced that one of the most stickling differences involved cell adhesion molecules, including laminin subunit gamma 1 (LAMC1) and beta 2 (LAMB2). Next, total RNA and protein extracts were obtained from fresh PDL tissues of deciduous (n = 6) and permanent (n = 6) teeth, and Western blotting and qPCR analysis were used to validate our in vitro findings. Western blot analysis confirmed that LAMC1 was increased in DecPDL fresh tissues (p<0.05). Furthermore, qPCR data analysis revealed that mRNA levels for laminin subunit beta 1 (LAMB1), beta 3 (LAMB3), LAMC1, and gamma 2 (LAMC2) were higher in DecPDL fresh tissues, whereas transcripts for LAMB2 were increased in PermPDL (p<0.05). In conclusion, the differential expression of laminin chains in DecPDL and PermPDL suggests an involvement of laminin-dependent pathways in the control of physiological differences between them.


Asunto(s)
Laminina/metabolismo , Ligamento Periodontal/metabolismo , Diente Primario/metabolismo , Adulto , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Niño , Dentición Permanente , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Adulto Joven
17.
J Proteomics ; 141: 12-23, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27095596

RESUMEN

UNLABELLED: Dental cementum (DC) covers the tooth root and has important functions in tooth attachment and position. DC can be lost to disease, and regeneration is currently unpredictable due to limited understanding of DC formation. This study used a model of experimentally-induced apposition (EIA) in mice to identify proteins associated with new DC formation. Mandibular first molars were induced to super-erupt for 6 and 21days after extracting opposing maxillary molars. Decalcified and formalin-fixed paraffin-embedded mandible sections were prepared for laser capture microdissection. Microdissected protein extracts were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), and the data submitted to repeated measure ANOVA test (RM-ANOVA, alpha=5%). A total of 519 proteins were identified, with 97 (18.6%) proteins found exclusively in EIA sites and 50 (9.6%) proteins exclusively expressed in control sites. Fifty six (10.7%) proteins were differentially regulated by RM-ANOVA (p<0.05), with 24 regulated by the exclusive effect of EIA (12 proteins) or the interaction between EIA and time (12 proteins), including serpin 1a, procollagen C-endopeptidase enhancer, tenascin X (TNX), and asporin (ASPN). In conclusion, proteomic analysis demonstrated significantly altered protein profile in DC under EIA, providing new insights on DC biology and potential candidates for tissue engineering applications. SIGNIFICANCE: Dental cementum (DC) is a mineralized tissue that covers the tooth root surface and has important functions in tooth attachment and position. DC and other periodontal tissues can be lost to disease, and regeneration is currently unpredictable due to lack of understanding of DC formation. This study used a model of experimentally-induced apposition (EIA) in mice to promote new cementum formation, followed by laser capture microdissection (LCM) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) proteomic analysis. This approach identified proteins associated with new cementum formation that may be targets for promoting cementum regeneration.


Asunto(s)
Cemento Dental/fisiología , Proteoma/análisis , Regeneración , Animales , Cromatografía Liquida , Perfilación de la Expresión Génica , Ratones , Modelos Animales , Ligamento Periodontal , Proteínas/análisis , Espectrometría de Masas en Tándem , Raíz del Diente
18.
J Periodontol ; 87(7): e138-47, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26962679

RESUMEN

BACKGROUND: Periodontal ligament (PDL) has been reported to be a source of mesenchymal stem cells (MSCs).New vascular networks from undifferentiated cells are essential for repair/regeneration of specialized tissues, including PDL. The current study aims to determine potential of CD105(+)-enriched cell subsets of periodontal ligament cells (PDLSCs) to differentiate into endothelial cell (EC)-like cells and to give insights into the mechanism involved. METHODS: CD105(+)-enriched PDLSCs were induced to EC differentiation by endothelial growth medium 2 (EGM-2) for 3, 7, 14, and 21 days, with mRNA/protein levels and functional activity assessed by: 1) real-time polymerase chain reaction; 2) Western blotting; 3) fluorescence-activated cell sorting; 4) immunohistochemistry; 5) immunofluorescence; 6) matrigel; and 7) small interfering RNA assays. RESULTS: Data analyses demonstrated that EGM-2 treated PDLSCs presented increased expression of EC markers, including: 1) CD105; 2) kinase domain-containing receptor; and 3) Ulex europaeus agglutinin 1, and were able to form cord/tube-like structures. Gene and protein expression analysis showed that neuropilin 2 (NRP2), a key factor for vascular development, was significantly downregulated during EC differentiation. NRP2 was constitutively expressed in mouse PDL tissues by immunohistochemistry analysis, and NRP2 knockdown in CD105(+)-enriched PDLSCs resulted in increased cord/tube-like structures in a matrigel assay. CONCLUSION: These findings demonstrated the potential of CD105(+)-enriched PDLSCs to support angiogenesis, and NRP2 as a pivotal factor regulating this process.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Neuropilinas/fisiología , Ligamento Periodontal , Animales , Citometría de Flujo , Ratones
19.
Clin Sci (Lond) ; 130(10): 785-99, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26823560

RESUMEN

EEF1D (eukaryotic translation elongation factor 1δ) is a subunit of the elongation factor 1 complex of proteins that mediates the elongation process during protein synthesis via enzymatic delivery of aminoacyl-tRNAs to the ribosome. Although the functions of EEF1D in the translation process are recognized, EEF1D expression was found to be unbalanced in tumours. In the present study, we demonstrate the overexpression of EEF1D in OSCC (oral squamous cell carcinoma), and revealed that EEF1D and protein interaction partners promote the activation of cyclin D1 and vimentin proteins. EEF1D knockdown in OSCC reduced cell proliferation and induced EMT (epithelial-mesenchymal transition) phenotypes, including cell invasion. Taken together, these results define EEF1D as a critical inducer of OSCC proliferation and EMT.


Asunto(s)
Carcinoma de Células Escamosas/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias de la Boca/genética , Factor 1 de Elongación Peptídica/genética , Carcinoma de Células Escamosas/diagnóstico , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias de Cabeza y Cuello/diagnóstico , Humanos , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Fenotipo , Carcinoma de Células Escamosas de Cabeza y Cuello
20.
J Bone Miner Res ; 31(2): 430-442, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26274352

RESUMEN

The dental cementum covering the tooth root is similar to bone in several respects but remains poorly understood in terms of development and differentiation of cementoblasts, as well as the potential function(s) of cementocytes residing in the cellular cementum. It is not known if the cementocyte is a dynamic actor in cementum metabolism, comparable to the osteocyte in the bone. Cementocytes exhibit irregular spacing and lacunar shape, with fewer canalicular connections compared with osteocytes. Immunohistochemistry and quantitative PCR (qPCR) revealed that the in vivo expression profile of cementocytes paralleled that of osteocytes, including expression of dentin matrix protein 1 (Dmp1/DMP1), Sost/sclerostin, E11/gp38/podoplanin, Tnfrsf11b (osteoprotegerin [OPG]), and Tnfsf11 (receptor activator of NF-κB ligand [RANKL]). We used the Immortomouse(+/-); Dmp1-GFP(+/-) mice to isolate cementocytes as Dmp1-expressing cells followed by immortalization using the interferon (IFN)-γ-inducible promoter driving expression of a thermolabile large T antigen to create the first immortalized line of cementocytes, IDG-CM6. This cell line reproduced the expression profile of cementocytes observed in vivo, including alkaline phosphatase activity and mineralization. IDG-CM6 cells expressed higher levels of Tnfrsf11b and lower levels of Tnfsf11 compared with IDG-SW3 osteocytes, and under fluid flow shear stress, IDG-CM6 cells significantly increased OPG while decreasing RANKL, leading to a significantly increased OPG/RANKL ratio, which would inhibit osteoclast activation. These studies indicate similarities yet potentially important differences in the function of cementocytes compared with osteocytes and support cementocytes as mechanically responsive cells.


Asunto(s)
Cemento Dental/citología , Osteocitos/citología , Proteínas Adaptadoras Transductoras de Señales , Animales , Línea Celular Transformada , Cemento Dental/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Osteocitos/metabolismo , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligando RANK/genética , Ligando RANK/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...