Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Transl Med ; 21(1): 650, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37743503

RESUMEN

BACKGROUND: Stem cell products are increasingly entering early stage clinical trials for treating retinal degeneration. The field is learning from experience about comparability of cells proposed for preclinical and clinical use. Without this, preclinical data supporting translation to a clinical study might not adequately reflect the performance of subsequent clinical-grade cells in patients. METHODS: Research-grade human neural progenitor cells (hNPC) and clinical-grade hNPC (termed CNS10-NPC) were injected into the subretinal space of the Royal College of Surgeons (RCS) rat, a rodent model of retinal degeneration such as retinitis pigmentosa. An investigational new drug (IND)-enabling study with CNS10-NPC was performed in the same rodent model. Finally, surgical methodology for subretinal cell delivery in the clinic was optimized in a large animal model with Yucatan minipigs. RESULTS: Both research-grade hNPC and clinical-grade hNPC can survive and provide functional and morphological protection in a dose-dependent fashion in RCS rats and the optimal cell dose was defined and used in IND-enabling studies. Grafted CNS10-NPC migrated from the injection site without differentiation into retinal cell phenotypes. Additionally, CNS10-NPC showed long-term survival, safety and efficacy in a good laboratory practice (GLP) toxicity and tumorigenicity study, with no observed cell overgrowth even at the maximum deliverable dose. Finally, using a large animal model with the Yucatan minipig, which has an eye size comparable to the human, we optimized the surgical methodology for subretinal cell delivery in the clinic. CONCLUSIONS: These extensive studies supported an approved IND and the translation of CNS10-NPC to an ongoing Phase 1/2a clinical trial (NCT04284293) for the treatment of retinitis pigmentosa.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Humanos , Animales , Ratas , Porcinos , Porcinos Enanos , Degeneración Retiniana/terapia , Neuronas , Instituciones de Atención Ambulatoria
2.
Mol Metab ; 55: 101403, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34823065

RESUMEN

OBJECTIVE: The contribution of beta-cell dysfunction to type 2 diabetes (T2D) is not restricted to insulinopenia in the late stages of the disease. Elevated fasting insulinemia in normoglycemic humans is a major factor predicting the onset of insulin resistance and T2D, demonstrating an early alteration of beta-cell function in T2D. Moreover, an early and chronic increase in fasting insulinemia contributes to insulin resistance in high-fat diet (HFD)-fed mice. However, whether there are genetic factors that promote beta-cell-initiated insulin resistance remains undefined. Human variants of the mitochondrial transporter ABCB10, which regulates redox by increasing bilirubin synthesis, have been associated with an elevated risk of T2D. The effects of T2D ABCB10 variants on ABCB10 expression and the actions of ABCB10 in beta-cells are unknown. METHODS: The expression of beta-cell ABCB10 was analyzed in published transcriptome datasets from human beta-cells carrying the T2D-risk ABCB10 variant. Insulin sensitivity, beta-cell proliferation, and secretory function were measured in beta-cell-specific ABCB10 KO mice (Ins1Cre-Abcb10flox/flox). The short-term role of beta-cell ABCB10 activity on glucose-stimulated insulin secretion (GSIS) was determined in isolated islets. RESULTS: Carrying the T2Drisk allele G of ABCB10 rs348330 variant was associated with increased ABCB10 expression in human beta-cells. Constitutive deletion of Abcb10 in beta-cells protected mice from hyperinsulinemia and insulin resistance by limiting HFD-induced beta-cell expansion. An early limitation in GSIS and H2O2-mediated signaling caused by elevated ABCB10 activity can initiate an over-compensatory expansion of beta-cell mass in response to HFD. Accordingly, increasing ABCB10 expression was sufficient to limit GSIS capacity. In health, ABCB10 protein was decreased during islet maturation, with maturation restricting beta-cell proliferation and elevating GSIS. Finally, ex-vivo and short-term deletion of ABCB10 in islets isolated from HFD-fed mice increased H2O2 and GSIS, which was reversed by bilirubin treatments. CONCLUSIONS: Beta-cell ABCB10 is required for HFD to induce insulin resistance in mice by amplifying beta-cell mass expansion to maladaptive levels that cause fasting hyperinsulinemia.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Resistencia a la Insulina/genética , Células Secretoras de Insulina/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Femenino , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo
3.
Sci Transl Med ; 13(594)2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34011630

RESUMEN

Although the role of hydrophilic antioxidants in the development of hepatic insulin resistance and nonalcoholic fatty liver disease has been well studied, the role of lipophilic antioxidants remains poorly characterized. A known lipophilic hydrogen peroxide scavenger is bilirubin, which can be oxidized to biliverdin and then reduced back to bilirubin by cytosolic biliverdin reductase. Oxidation of bilirubin to biliverdin inside mitochondria must be followed by the export of biliverdin to the cytosol, where biliverdin is reduced back to bilirubin. Thus, the putative mitochondrial exporter of biliverdin is expected to be a major determinant of bilirubin regeneration and intracellular hydrogen peroxide scavenging. Here, we identified ABCB10 as a mitochondrial biliverdin exporter. ABCB10 reconstituted into liposomes transported biliverdin, and ABCB10 deletion caused accumulation of biliverdin inside mitochondria. Obesity with insulin resistance up-regulated hepatic ABCB10 expression in mice and elevated cytosolic and mitochondrial bilirubin content in an ABCB10-dependent manner. Revealing a maladaptive role of ABCB10-driven bilirubin synthesis, hepatic ABCB10 deletion protected diet-induced obese mice from steatosis and hyperglycemia, improving insulin-mediated suppression of glucose production and decreasing lipogenic SREBP-1c expression. Protection was concurrent with enhanced mitochondrial function and increased inactivation of PTP1B, a phosphatase disrupting insulin signaling and elevating SREBP-1c expression. Restoration of cellular bilirubin content in ABCB10 KO hepatocytes reversed the improvements in mitochondrial function and PTP1B inactivation, demonstrating that bilirubin was the maladaptive effector linked to ABCB10 function. Thus, we identified a fundamental transport process that amplifies intracellular bilirubin redox actions, which can exacerbate insulin resistance and steatosis in obesity.


Asunto(s)
Biliverdina , Mitocondrias , Animales , Antioxidantes , Bilirrubina , Hígado , Ratones , Obesidad
4.
PLoS One ; 10(3): e0122818, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25816337

RESUMEN

Circulating redox state changes, determined by the ratio of reduced/oxidized pairs of different metabolites, have been associated with metabolic diseases. However, the pathogenic contribution of these changes and whether they modulate normal tissue function is unclear. As alterations in hepatic gluconeogenesis and glycogen metabolism are hallmarks that characterize insulin resistance and type 2 diabetes, we tested whether imposed changes in the extracellular redox state could modulate these processes. Thus, primary hepatocytes were treated with different ratios of the following physiological extracellular redox couples: ß-hydroxybutyrate (ßOHB)/acetoacetate (Acoc), reduced glutathione (GSH)/oxidized glutathione (GSSG), and cysteine/cystine. Exposure to a more oxidized ratio via extracellular ßOHB/Acoc, GSH/GSSG, and cysteine/cystine in hepatocytes from fed mice increased intracellular hydrogen peroxide without causing oxidative damage. On the other hand, addition of more reduced ratios of extracellular ßOHB/Acoc led to increased NAD(P)H and maximal mitochondrial respiratory capacity in hepatocytes. Greater ßOHB/Acoc ratios were also associated with decreased ß-oxidation, as expected with enhanced lipogenesis. In hepatocytes from fasted mice, a more extracellular reduced state of ßOHB/Acoc led to increased alanine-stimulated gluconeogenesis and enhanced glycogen synthesis capacity from added glucose. Thus, we demonstrated for the first time that the extracellular redox state regulates the major metabolic functions of the liver and involves changes in intracellular NADH, hydrogen peroxide, and mitochondrial respiration. Because redox state in the blood can be communicated to all metabolically sensitive tissues, this work confirms the hypothesis that circulating redox state may be an important regulator of whole body metabolism and contribute to alterations associated with metabolic diseases.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina/genética , Mitocondrias/metabolismo , Oxidación-Reducción/efectos de los fármacos , Ácido 3-Hidroxibutírico/administración & dosificación , Acetoacetatos/administración & dosificación , Animales , Cisteína/administración & dosificación , Cistina/administración & dosificación , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/patología , Gluconeogénesis/efectos de los fármacos , Glutatión/administración & dosificación , Disulfuro de Glutatión/administración & dosificación , Glucógeno/biosíntesis , Hepatocitos/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , NAD/biosíntesis , Respiración/efectos de los fármacos
5.
PLoS One ; 10(2): e0118148, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25659150

RESUMEN

Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαß1 potassium channel, which modulates vascular smooth muscle cell (VSMC) proliferation and function, respectively. Here, we have assessed the possible involvement of BKαß1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation. Western blot analysis in HEK cell lines showed that expression of vascular BKαß1 channels potentiates the tungstate-induced ERK1/2 phosphorylation in a Gi/o protein-dependent manner. Tungstate activated BKαß1 channels upstream of G proteins as channel activation was not altered by the inhibition of G proteins with GDPßS or pertussis toxin. Moreover, analysis of Gi/o protein activation measuring the FRET among heterologously expressed Gi protein subunits suggested that tungstate-targeting of BKαß1 channels promotes G protein activation. Single channel recordings on VSMCs from wild-type and ß1-knockout mice indicated that the presence of the regulatory ß1 subunit was essential for the tungstate-mediated activation of BK channels in VSMCs. Moreover, the specific BK channel blocker iberiotoxin lowered tungstate-induced ERK phosphorylation by 55% and partially reverted (by 51%) the tungstate-produced reduction of platelet-derived growth factor (PDGF)-induced proliferation in human VSMCs. Our observations indicate that tungstate-targeting of BKαß1 channels promotes activation of PTX-sensitive Gi proteins to enhance the tungstate-induced phosphorylation of ERK, and inhibits PDGF-stimulated cell proliferation in human vascular smooth muscle.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Compuestos de Tungsteno/farmacología , Animales , Calcio/metabolismo , Señalización del Calcio/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Células HEK293 , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Noqueados , Músculo Liso Vascular/citología , Fosforilación/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/farmacología
6.
FEBS Lett ; 587(3): 291-6, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23260418

RESUMEN

Tungstate treatment ameliorates experimental diabetes by increasing liver glycogen deposition through an as yet unidentified mechanism. The signalling mechanism of tungstate was studied in CHOIR cells and primary cultured hepatocytes. This compound exerted its pro-glycogenic effects through a new G-protein-dependent and Tyr-Kinase Receptor-independent mechanism. Chemical or genetic disruption of G-protein signalling prevented the activation of the Ras/ERK cascade and the downstream induction of glycogen synthesis caused by tungstate. Thus, these findings unveil a novel non-canonical signalling pathway that leads to the activation of glycogen synthesis and that could be exploited as an approach to treat diabetes.


Asunto(s)
Glucógeno/biosíntesis , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Hipoglucemiantes/farmacología , Compuestos de Tungsteno/farmacología , Animales , Células CHO , Cricetinae , Cricetulus , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Fosforilación/efectos de los fármacos , Ratas , Ratas Wistar , Receptor de Insulina/genética , Transducción de Señal/efectos de los fármacos , Transfección , Proteínas ras/metabolismo
7.
PLoS One ; 7(8): e42305, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22905122

RESUMEN

AIMS: Oral administration of sodium tungstate has shown hyperglycemia-reducing activity in several animal models of diabetes. We present new insights into the mechanism of action of tungstate. METHODS: We studied protein expression and phosphorylation in the liver of STZ rats, a type I diabetes model, treated with sodium tungstate in the drinking water (2 mg/ml) and in primary cultured-hepatocytes, through Western blot and Real Time PCR analysis. RESULTS: Tungstate treatment reduces the expression of gluconeogenic enzymes (PEPCK, G6Pase, and FBPase) and also regulates transcription factors accountable for the control of hepatic metabolism (c-jun, c-fos and PGC1α). Moreover, ERK, p90rsk and GSK3, upstream kinases regulating the expression of c-jun and c-fos, are phosphorylated in response to tungstate. Interestingly, PKB/Akt phosphorylation is not altered by the treatment. Several of these observations were reproduced in isolated rat hepatocytes cultured in the absence of insulin, thereby indicating that those effects of tungstate are insulin-independent. CONCLUSIONS: Here we show that treatment with tungstate restores the phosphorylation state of various signaling proteins and changes the expression pattern of metabolic enzymes.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Gluconeogénesis/efectos de los fármacos , Compuestos de Tungsteno/farmacología , Administración Oral , Animales , Glucosa/metabolismo , Glucógeno Sintasa/metabolismo , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Fosforilación , Ratas , Ratas Wistar , Estreptozocina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...