Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(1): 113619, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38157299

RESUMEN

Thirst and salt appetite are temporarily suppressed after water and salt ingestion, respectively, before absorption; however, the underlying neural mechanisms remain unclear. The parabrachial nucleus (PBN) is the relay center of ingestion signals from the digestive organs. We herein identify two distinct neuronal populations expressing cholecystokinin (Cck) mRNA in the lateral PBN that are activated in response to water and salt intake, respectively. The two Cck neurons in the dorsal-lateral compartment of the PBN project to the median preoptic nucleus and ventral part of the bed nucleus of the stria terminalis, respectively. The optogenetic stimulation of respective Cck neurons suppresses thirst or salt appetite under water- or salt-depleted conditions. The combination of optogenetics and in vivo Ca2+ imaging during ingestion reveals that both Cck neurons control GABAergic neurons in their target nuclei. These findings provide the feedback mechanisms for the suppression of thirst and salt appetite after ingestion.


Asunto(s)
Apetito , Colecistoquinina , Apetito/fisiología , Cloruro de Sodio Dietético , Retroalimentación , Sed/fisiología , Cloruro de Sodio , Neuronas GABAérgicas , Agua
2.
Life Sci ; 313: 121292, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36535401

RESUMEN

AIMS: Chronic inflammation plays crucial roles in obesity-induced metabolic diseases. Protein tyrosine phosphatase receptor type O (PTPRO) is a member of the R3 subfamily of receptor-like protein tyrosine phosphatases. We previously suggested a role for PTPRO in the inactivation of the insulin receptor. The present study aimed to elucidate the involvement of PTPRO in the control of glucose and lipid metabolism as well as in obesity-induced systemic inflammation. MATERIALS AND METHODS: Lipid accumulation in adipose tissue and the liver, the expression of inflammatory cytokines, and insulin resistance associated with systemic inflammation were investigated in hyper-obese Ptpro-KO mice by feeding a high-fat/high-sucrose diet (HFHSD). The effects of the administration of AKB9778, a specific inhibitor of PTPRO, to ob/ob mice and cultured 3T3-L1 preadipocyte cells were also examined. KEY FINDINGS: Ptpro was highly expressed in visceral white adipose tissue and macrophages. Ptpro-KO mice fed HFHSD were hyper-obese, but did not have ectopic fat accumulation in the liver, dysfunctional lipid and glucose homeostasis, systemic inflammation, or insulin resistance. The administration of AKB9778 reproduced "the healthy obese phenotypes" of Ptpro-KO mice in highly obese ob/ob mice. Furthermore, the inhibition of PTPRO promoted the growth of lipid droplets in adipocytes through an increase in the phosphorylation of Tyr(117) in vimentin. SIGNIFICANCE: Healthy systemic conditions with the attenuation of inflammation in hyper-obese Ptpro-KO mice were associated with the expansion of adipose tissue and low activation of NF-κb. Therefore, PTPRO may be a promising target to ameliorate hepatic steatosis and metabolic dysfunction.


Asunto(s)
Resistencia a la Insulina , Ratones , Animales , Tejido Adiposo/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Inflamación/metabolismo , Glucosa/metabolismo , Lípidos , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos
3.
Proc Jpn Acad Ser B Phys Biol Sci ; 98(7): 283-324, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35908954

RESUMEN

Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na+ concentration ([Na+]) in body fluids is maintained at 135-145 mM and is broadly conserved among terrestrial animals. Homeostatic osmoregulation by Na+ is vital for life because severe hyper- or hypotonicity elicits irreversible organ damage and lethal neurological trauma. To achieve "body fluid homeostasis" or "Na homeostasis", the brain continuously monitors [Na+] in body fluids and controls water/salt intake and water/salt excretion by the kidneys. These physiological functions are primarily regulated based on information on [Na+] and relevant circulating hormones, such as angiotensin II, aldosterone, and vasopressin. In this review, we discuss sensing mechanisms for [Na+] and hormones in the brain that control water/salt intake behaviors, together with the responsible sensors (receptors) and relevant neural pathways. We also describe mechanisms in the brain by which [Na+] increases in body fluids activate the sympathetic neural activity leading to hypertension.


Asunto(s)
Líquidos Corporales , Cloruro de Sodio Dietético , Animales , Líquidos Corporales/metabolismo , Homeostasis , Hormonas , Sodio/metabolismo , Agua
4.
Lab Invest ; 102(8): 846-858, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35288653

RESUMEN

Myeloid cell mediated mechanisms regulate synovial joint inflammation. IL-34, a macrophage (Mø) growth and differentiation molecule, is markedly expressed in neutrophil and Mø-rich arthritic synovium. IL-34 engages a newly identified independent receptor, protein-tyrosine phosphatase, receptor-type, zeta (PTPRZ), that we find is expressed by Mø. As IL-34 is prominent in rheumatoid arthritis, we probed for the IL-34 and PTPRZ-dependent myeloid cell mediated mechanisms central to arthritis using genetic deficient mice in K/BxN serum-transfer arthritis. Unanticipatedly, we now report that IL-34 and PTPRZ limited arthritis as intra-synovial pathology and bone erosion were more severe in IL-34 and PTPRZ KO mice during induced arthritis. We found that IL-34 and PTPRZ: (i) were elevated, bind, and induce downstream signaling within the synovium in arthritic mice and (ii) were upregulated in the serum and track with disease activity in rheumatoid arthritis patients. Mechanistically, IL-34 and PTPRZ skewed Mø toward a reparative phenotype, and enhanced Mø clearance of apoptotic neutrophils, thereby decreasing neutrophil recruitment and intra-synovial neutrophil extracellular traps. With fewer neutrophils and neutrophil extracellular traps in the synovium, destructive inflammation was restricted, and joint pathology and bone erosion diminished. These novel findings suggest that IL-34 and PTPRZ-dependent mechanisms in the inflamed synovium limit, rather than promote, inflammatory arthritis.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Interleucinas , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Animales , Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Proteínas Portadoras , Inflamación , Interleucinas/metabolismo , Ratones , Ratones Noqueados , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Membrana Sinovial/metabolismo
5.
Pediatr Res ; 91(5): 1286-1289, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34239067

RESUMEN

BACKGROUND: Children receiving home medical care need special attention to prevent unexpected death. The aim of this study was to clarify the factors contributing to death in children receiving home medical care from the child death review database. METHODS: Children receiving home medical care were enrolled from the child death review database from 2014 to 2016 in Aichi prefecture, Japan, with a population of one million children. Types of medical care and factors contributing to death were examined. RESULTS: Of the 631 children who died, 40 children (6%) were receiving home medical care (21: tracheostomy; 19: ventilator; 26: suctioning of naso-oral secretions; 19: oxygen inhalation; 32: tube feeding; 6: urethral catheterization; and 1: peritoneal dialysis). The death rate was 50 times that in the general population of children. Ten children had contributory factors that seemed to be preventable. In four children, the families could not replace the tracheostomy tubes during an accident. In three, oxygen saturation or ventilator alarms were not set appropriately. In two, an oxygen cylinder became empty. One child fell down from a seat in a car. CONCLUSIONS: Improvement of devices and correct guidance to caregivers may reduce the death rate in children receiving home medical care. IMPACT: Children receiving home medical care, such as tracheostomy care, mechanical ventilation, or tube feeding, need special attention to prevent unexpected death. In this population-based child death review, 6% of children received home medical care, and it was estimated that 1 of 100 children receiving home medical care died per year. One-quarter of the deaths could be preventable by caregiver education or development of devices.


Asunto(s)
Servicios de Atención de Salud a Domicilio , Traqueostomía , Cuidadores , Niño , Humanos , Oxígeno , Respiración Artificial
6.
Nat Commun ; 11(1): 5692, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33173030

RESUMEN

The control of water-intake behavior is critical for life because an excessive water intake induces pathological conditions, such as hyponatremia or water intoxication. However, the brain mechanisms controlling water intake currently remain unclear. We previously reported that thirst-driving neurons (water neurons) in the subfornical organ (SFO) are cholecystokinin (CCK)-dependently suppressed by GABAergic interneurons under Na-depleted conditions. We herein show that CCK-producing excitatory neurons in the SFO stimulate the activity of GABAergic interneurons via CCK-B receptors. Fluorescence-microscopic Ca2+ imaging demonstrates two distinct subpopulations in CCK-positive neurons in the SFO, which are persistently activated under hyponatremic conditions or transiently activated in response to water drinking, respectively. Optical and chemogenetic silencings of the respective types of CCK-positive neurons both significantly increase water intake under water-repleted conditions. The present study thus reveals CCK-mediated neural mechanisms in the central nervous system for the control of water-intake behaviors.


Asunto(s)
Conducta de Ingestión de Líquido/fisiología , Neuronas/fisiología , Órgano Subfornical/citología , Animales , Masculino , Ratones , Microscopía Fluorescente/métodos , Sodio/metabolismo , Órgano Subfornical/fisiología
7.
Glia ; 68(12): 2550-2584, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32857879

RESUMEN

Olfactory ensheathing cells (OECs) are neural crest-derived glia that ensheath bundles of olfactory axons from their peripheral origins in the olfactory epithelium to their central targets in the olfactory bulb. We took an unbiased laser microdissection and differential RNA-seq approach, validated by in situ hybridization, to identify candidate molecular mechanisms underlying mouse OEC development and differences with the neural crest-derived Schwann cells developing on other peripheral nerves. We identified 25 novel markers for developing OECs in the olfactory mucosa and/or the olfactory nerve layer surrounding the olfactory bulb, of which 15 were OEC-specific (that is, not expressed by Schwann cells). One pan-OEC-specific gene, Ptprz1, encodes a receptor-like tyrosine phosphatase that blocks oligodendrocyte differentiation. Mutant analysis suggests Ptprz1 may also act as a brake on OEC differentiation, and that its loss disrupts olfactory axon targeting. Overall, our results provide new insights into OEC development and the diversification of neural crest-derived glia.


Asunto(s)
Microdisección , Transcriptoma , Animales , Diferenciación Celular , Células Cultivadas , Rayos Láser , Ratones , Neuroglía , Bulbo Olfatorio , Mucosa Olfatoria
8.
Pflugers Arch ; 472(5): 609-624, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32372285

RESUMEN

Nax is a brain [Na+] sensor expressed in the subfornical organ (SFO) and organum vasculosum of the lamina terminalis (OVLT) in the brain. We previously demonstrated that Nax signals are involved in the control of water intake behavior through the Nax/TRPV4 pathway. Nax gene knockout mice showed significantly attenuated water intake after an intracerebroventricular (ICV) injection of a hypertonic NaCl solution; however, the induction of a certain amount of water intake still remained, suggesting that another unknown [Na+]-dependent pathway besides the Nax/TRPV4 pathway contributes to water intake. In the present study, we screened for novel [Na+] sensors involved in water intake control and identified SLC9A4 (also called sodium (Na+)/hydrogen (H+) exchanger 4 (NHE4)). SLC9A4 is expressed in angiotensin II (Ang II) receptor type 1a (AT1a)-positive neurons in the OVLT. Sodium-imaging experiments using cultured cells transfected with slc9a4 revealed that SLC9A4 was activated by increases in extracellular [Na+] ([Na+]o), but not osmolality. Moreover, the firing activity of SLC9A4-positive neurons was enhanced by increases in [Na+]o and Ang II. slc9a4 knockdown in the OVLT reduced water intake induced by increases in [Na+], but not osmolality, in the cerebrospinal fluid. ICV injection experiments of a specific inhibitor suggested that the increase in extracellular [H+] caused by SLC9A4 activation next stimulates acid-sensing channel 1a (AS1C1a) to induce water intake. Our results thus indicate that SLC9A4 in the OVLT functions as a [Na+] sensor for the control of water intake and that the SLC9A4 signal is independent of the Nax/TRPV4 pathway.


Asunto(s)
Ingestión de Líquidos , Organum Vasculosum/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sodio/metabolismo , Potenciales de Acción , Animales , Línea Celular Tumoral , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/fisiología , Organum Vasculosum/citología , Organum Vasculosum/fisiología , Intercambiadores de Sodio-Hidrógeno/genética
9.
Neurosci Res ; 154: 45-51, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31150667

RESUMEN

Nax is a [Na+] sensor expressed in specific glial cells in the sensory circumventricular organs (sCVOs) in the brain. We recently demonstrated that Nax signals are involved in the control of not only salt intake but also water intake behavior. Our pharmacological experiments suggested that Nax signals led to activation of neurons bearing TRPV4 by using epoxyeicosatrienoic acids (EETs) as gliotransmitters to stimulate water intake. In the present study, we performed selective lesions of individual sCVOs in wild-type (WT) mice and the site-directed rescue of Nax expression in Nax-gene knockout (Nax-KO) mice. These experiments revealed that the Nax channel in the organum vasculosum laminae terminalis (OVLT) functions as a [Na+] sensor for the control of water intake behavior. Direct measurements of 5,6-EET and 8,9-EET in the OVLT demonstrated that EET levels were indeed increased two-fold by water deprivation for two days in WT, but not Nax-KO mice, indicating that EETs were Nax-dependently produced in the OVLT in response to increases in [Na+] in body fluids. More importantly, intracerebroventricular injection of 5,6-EET at the same level was effective to induce water intake. Double staining revealed that Nax-positive cells also expressed Cyp2c44, a cytochrome P450 epoxygenase, to generate EETs. Collectively, these results indicate that Nax-positive glial cells produce EETs to activate TRPV4-positive neurons which may stimulate water intake, in response to increases in [Na+] of body fluids.


Asunto(s)
Líquidos Corporales/fisiología , Sistema Enzimático del Citocromo P-450/metabolismo , Ingestión de Líquidos/fisiología , Neuroglía/metabolismo , Organum Vasculosum/metabolismo , Sodio/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Citocromo P-450 CYP2J2 , Familia 2 del Citocromo P450/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Canales Catiónicos TRPV/metabolismo
10.
PLoS Biol ; 17(9): e3000174, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31513577

RESUMEN

Congenital nystagmus, involuntary oscillating small eye movements, is commonly thought to originate from aberrant interactions between brainstem nuclei and foveal cortical pathways. Here, we investigated whether nystagmus associated with congenital stationary night blindness (CSNB) results from primary deficits in the retina. We found that CSNB patients as well as an animal model (nob mice), both of which lacked functional nyctalopin protein (NYX, nyx) in ON bipolar cells (BCs) at their synapse with photoreceptors, showed oscillating eye movements at a frequency of 4-7 Hz. nob ON direction-selective ganglion cells (DSGCs), which detect global motion and project to the accessory optic system (AOS), oscillated with the same frequency as their eyes. In the dark, individual ganglion cells (GCs) oscillated asynchronously, but their oscillations became synchronized by light stimulation. Likewise, both patient and nob mice oscillating eye movements were only present in the light when contrast was present. Retinal pharmacological and genetic manipulations that blocked nob GC oscillations also eliminated their oscillating eye movements, and retinal pharmacological manipulations that reduced the oscillation frequency of nob GCs also reduced the oscillation frequency of their eye movements. We conclude that, in nob mice, synchronized oscillations of retinal GCs, most likely the ON-DCGCs, cause nystagmus with properties similar to those associated with CSNB in humans. These results show that the nob mouse is the first animal model for a form of congenital nystagmus, paving the way for development of therapeutic strategies.


Asunto(s)
Enfermedades Hereditarias del Ojo/fisiopatología , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Miopía/fisiopatología , Ceguera Nocturna/fisiopatología , Nistagmo Congénito/etiología , Células Ganglionares de la Retina/fisiología , Animales , Preescolar , Modelos Animales de Enfermedad , Femenino , Humanos , Lactante , Masculino , Ratones Noqueados
11.
J Biol Chem ; 294(41): 14953-14965, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31416834

RESUMEN

Protein-tyrosine phosphatase (PTPase) receptor type Z (PTPRZ) has two receptor isoforms, PTPRZ-A and -B, containing tandem intracellular PTP-D1 and -D2 domains, with only D1 being active. Pleiotrophin (PTN) binding to the extracellular PTPRZ region leads to inactivation of its PTPase activity, thereby facilitating oligodendrocyte precursor cell (OPC) differentiation and myelination in the central nervous system. However, the mechanisms responsible for PTN-induced PTPRZ inactivation remain unclear. We herein report that the crystal structure of the intracellular region of PTPRZ (PTPRZ-ICR) shows a "head-to-toe"-type dimer conformation, with D2 masking the catalytic site of D1. MS analyses revealed that PTPRZ-ICR proteins remain in monomer-dimer equilibrium in aqueous solution and that a substrate-derived inhibitory peptide or competitive inhibitor (SCB4380) specifically bind to the monomer form in a 1:1 ratio. A D2 deletion (ΔD2) or dimer interface mutation (DDKK) disrupted dimer formation, but SCB4380 binding was maintained. Similar to WT PTPRZ-B, monomer-biased PTPRZ-B-ΔD2 and PTPRZ-B-DDKK variants efficiently dephosphorylated p190RhoGAP at Tyr-1105 when co-expressed in BHK-21 cells. The catalytic activities of these variants were not suppressed by PTN treatment, but were inhibited by the cell-permeable PTPase inhibitor NAZ2329. Of note, the PTN treatment did not enhance OPC differentiation in primary cultured glial cells from ΔD2 or PTPase-inactive PTPRZ-B (CS) mutant knock-in mice. Our results thus indicate that PTN-induced PTPRZ inactivation results from dimer formation of the intracellular tandem PTP domains in a head-to-toe configuration, which is physiologically relevant to the control of OPC differentiation in vivo.


Asunto(s)
Multimerización de Proteína , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/química , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Animales , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Ligandos , Ratones , Modelos Moleculares , Mutación , Estructura Cuaternaria de Proteína , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética
12.
PLoS One ; 14(8): e0221205, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31430310

RESUMEN

Methamphetamine (METH), a commonly abused drug, elevates extracellular dopamine (DA) levels by inducing DA efflux through the DA transporter (DAT). Emerging evidence in rodent models suggests that locomotor responses to a novel inescapable open field may predict behavioral responses to abused drugs; METH produces more potent stimulant effects in high responders to novelty than in low responders. We herein found that mice deficient in protein tyrosine phosphatase receptor type Z (Ptprz-KO) exhibited an enhanced behavioral response to novelty; however, METH-induced hyperlocomotion was significantly lower in Ptprz-KO than in wild-type mice when METH was administered at a non-toxic dose of 1 mg per kg body weight (bdw). Single-cell RT-PCR revealed that the majority of midbrain DA neurons expressed PTPRZ. No histological alterations were observed in the mesolimbic or nigrostriatal dopaminergic pathways in Ptprz-KO brains; however, a significant decrease was noted in brain DA turnover, suggesting functional alterations. In vivo microdialysis experiments revealed that METH-evoked DA release in the nucleus accumbens was significantly lower in Ptprz-KO mice than in wild-type mice. Consistent with this result, Ptprz-KO mice showed significantly fewer cell surface DAT as well as weaker DA uptake activity in striatal synaptosomes prepared 1 hr after the administration of METH than wild-type mice, while no significant differences were observed in the two groups treated with saline. These results indicate that the high response phenotype of Ptprz-KO mice to novelty may not be simply attributed to hyper-dopaminergic activity, and that deficits in PTPRZ reduce the effects of METH by reducing DAT activity.


Asunto(s)
Conducta Animal/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Conducta Exploratoria , Metanfetamina/farmacología , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Animales , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Locomoción/efectos de los fármacos , Locomoción/genética , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo
13.
PLoS One ; 14(6): e0217880, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31194769

RESUMEN

Protein tyrosine phosphatase receptor type Z (PTPRZ) is preferentially expressed in the central nervous system as two transmembrane receptor isoforms PTPRZ-A/B and one secretory isoform PTPRZ-S. Ptprz-knockout mice lacking the expression of all three isoforms show behavioral, learning, and neurological abnormalities, including increased exploratory activities to novelty, deficits in spatial and contextual learning, and reduced responses to methamphetamine, relative to wild-type mice. To investigate whether PTPRZ isoforms play distinct physiological roles, we herein performed behavioral studies on two knock-in mouse lines: One expresses the catalytically inactive Cys-1930 to Ser (CS) mutants of PTPRZ-A/B, while the other generated in the present study expresses catalytically active mutants of PTPRZ-A/B lacking the negative regulatory PTP-D2 domain and C-terminal PDZ-binding motif (ΔD2) instead of wild-type PTPRZ-A/-B. In contrast to Ptprz-knockout mice, neither increased responses to novelty in the open field nor memory impairments in the inhibitory-avoidance task were observed in Ptprz-CS or Ptprz-ΔD2 mice. However, the effects of methamphetamine on locomotor activity were significantly weaker in Ptprz-KO mice and CS mutant mice than in wild-type mice, but were normal in ΔD2 mutant mice. Furthermore, microdialysis experiments revealed that methamphetamine-evoked dopamine release in the nucleus accumbens was reduced in Ptprz-KO mice and CS mutant mice. These results suggest that the extracellular region of PTPRZ, including the secretory isoform, is crucial for behavioral responses to novelty and the formation of aversive memories, whereas the PTPase activities of PTPRZ receptor isoforms are involved in regulating the dopaminergic system.


Asunto(s)
Conducta Animal , Mutación con Pérdida de Función , Núcleo Accumbens/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Sustitución de Aminoácidos , Animales , Reacción de Prevención/efectos de los fármacos , Catálisis , Dopamina/metabolismo , Conducta Exploratoria/efectos de los fármacos , Femenino , Técnicas de Sustitución del Gen , Locomoción/efectos de los fármacos , Masculino , Metanfetamina/farmacología , Ratones , Ratones Noqueados , Núcleo Accumbens/efectos de los fármacos , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/química , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo
14.
Glia ; 67(5): 967-984, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30667096

RESUMEN

Protein tyrosine phosphatase receptor type Z (PTPRZ) maintains oligodendrocyte precursor cells (OPCs) in an undifferentiated state. The inhibition of PTPase by its ligand pleiotrophin (PTN) promotes OPC differentiation; however, the substrate molecules of PTPRZ involved in the differentiation have not yet been elucidated in detail. We herein demonstrated that the tyrosine phosphorylation of AFAP1L2, paxillin, ERBB4, GIT1, p190RhoGAP, and NYAP2 was enhanced in OPC-like OL1 cells by a treatment with PTN. AFAP1L2, an adaptor protein involved in the PI3K-AKT pathway, exhibited the strongest response to PTN. PTPRZ dephosphorylated AFAP1L2 at tyrosine residues in vitro and in HEK293T cells. In OL1 cells, the knockdown of AFAP1L2 or application of a PI3K inhibitor suppressed cell differentiation as well as the PTN-induced phosphorylation of AKT and mTOR. We generated a knock-in mouse harboring a catalytically inactive Cys to Ser (CS) mutation in the PTPase domain. The phosphorylation levels of AFAP1L2, AKT, and mTOR were higher, and the expression of oligodendrocyte markers, including myelin basic protein (MBP) and myelin regulatory factor (MYRF), was stronger in CS knock-in brains than in wild-type brains on postnatal day 10; however, these differences mostly disappeared in the adult stage. Adult CS knock-in mice exhibited earlier remyelination after cuprizone-induced demyelination through the accelerated differentiation of OPCs. These phenotypes in CS knock-in mice were similar to those in Ptprz-deficient mice. Therefore, we conclude that the PTN-PTPRZ signal stimulates OPC differentiation partly by enhancing the tyrosine phosphorylation of AFAP1L2 in order to activate the PI3K-AKT pathway.


Asunto(s)
Proteínas Portadoras/metabolismo , Diferenciación Celular/fisiología , Citocinas/metabolismo , Oligodendroglía/fisiología , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/diagnóstico por imagen , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Inmunoprecipitación , Etiquetado Corte-Fin in Situ , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Proteínas de la Mielina/metabolismo , Proteínas Proto-Oncogénicas c-akt , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Detección de Señal Psicológica/efectos de los fármacos , Detección de Señal Psicológica/fisiología , Transfección , Microtomografía por Rayos X , Proteína Fluorescente Roja
15.
Neuron ; 101(1): 60-75.e6, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30503172

RESUMEN

Increases in sodium concentrations ([Na+]) in body fluids elevate blood pressure (BP) by enhancing sympathetic nerve activity (SNA). However, the mechanisms by which information on increased [Na+] is translated to SNA have not yet been elucidated. We herein reveal that sympathetic activation leading to BP increases is not induced by mandatory high salt intakes or the intraperitoneal/intracerebroventricular infusions of hypertonic NaCl solutions in Nax-knockout mice in contrast to wild-type mice. We identify Nax channels expressed in specific glial cells in the organum vasculosum lamina terminalis (OVLT) as the sensors detecting increases in [Na+] in body fluids and show that OVLT neurons projecting to the paraventricular nucleus (PVN) are activated via acid-sensing ion channel 1a (ASIC1a) by H+ ions exported from Nax-positive glial cells. The present results provide an insight into the neurogenic mechanisms responsible for salt-induced BP elevations.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Líquidos Corporales/metabolismo , Hipertensión/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Sodio/metabolismo , Canales de Sodio Activados por Voltaje/deficiencia , Animales , Presión Sanguínea/fisiología , Líquidos Corporales/química , Hipertensión/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Optogenética/métodos , Técnicas de Cultivo de Órganos , Organum Vasculosum/metabolismo , Organum Vasculosum/patología , Núcleo Hipotalámico Paraventricular/patología , Protones , Distribución Aleatoria , Sistema Nervioso Simpático/química , Sistema Nervioso Simpático/metabolismo
16.
J Neurosci ; 38(39): 8345-8363, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30082414

RESUMEN

Eph receptors play pivotal roles in the axon guidance of retinal ganglion cells (RGCs) at the optic chiasm and the establishment of the topographic retinocollicular map. We previously demonstrated that protein tyrosine phosphatase receptor type O (PTPRO) is specifically involved in the control of retinotectal projections in chicks through the dephosphorylation of EphA and EphB receptors. We subsequently revealed that all the mouse R3 subfamily members (PTPRB, PTPRH, PTPRJ, and PTPRO) of the receptor protein tyrosine phosphatase (RPTP) family inhibited Eph receptors as their substrates in cultured mammalian cells. We herein investigated the functional roles of R3 RPTPs in the projection of mouse retinal axon of both sexes. Ptpro and Ptprj were expressed in mouse RGCs; however, Ptprj expression levels were markedly higher than those of Ptpro Consistent with their expression levels, Eph receptor activity was significantly enhanced in Ptprj-knock-out (Ptprj-KO) retinas. In Ptprj-KO and Ptprj/Ptpro-double-KO (DKO) mice, the number of retinal axons that projected ipsilaterally or to the contralateral eye was significantly increased. Furthermore, retinal axons in Ptprj-KO and DKO mice formed anteriorly shifted ectopic terminal zones in the superior colliculus (SC). We found that c-Abl (Abelson tyrosine kinase) was downstream of ephrin-Eph signaling for the repulsion of retinal axons at the optic chiasm and in the SC. c-Abl was identified as a novel substrate for PTPRJ and PTPRO, and the phosphorylation of c-Abl was upregulated in Ptprj-KO and DKO retinas. Thus, PTPRJ regulates retinocollicular projections in mice by controlling the activity of Eph and c-Abl kinases.SIGNIFICANCE STATEMENT Correct retinocollicular projection is a prerequisite for proper vision. Eph receptors have been implicated in retinal axon guidance at the optic chiasm and the establishment of the topographic retinocollicular map. We herein demonstrated that protein tyrosine phosphatase receptor type J (PTPRJ) regulated retinal axonal projections by controlling Eph activities. The retinas of Ptprj-knock-out (KO) and Ptpro/Ptprj double-KO mice exhibited significantly enhanced Eph activities over those in wild-type mice, and their axons showed defects in pathfinding at the chiasm and retinocollicular topographic map formation. We also revealed that c-Abl (Abelson tyrosine kinase) downstream of Eph receptors was regulated by PTPRJ. These results indicate that the regulation of the ephrin-Eph-c-Abl axis by PTPRJ plays pivotal roles in the proper central projection of retinal axons during development.


Asunto(s)
Axones/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Receptores de la Familia Eph/metabolismo , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Colículos Superiores/metabolismo , Animales , Células Cultivadas , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Retina/citología , Retina/crecimiento & desarrollo , Células Ganglionares de la Retina/citología , Colículos Superiores/crecimiento & desarrollo , Regulación hacia Arriba , Vías Visuales/citología , Vías Visuales/crecimiento & desarrollo , Vías Visuales/metabolismo
17.
Neurobiol Learn Mem ; 152: 61-70, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29783061

RESUMEN

Brain-derived neurotrophic factor (BDNF) plays an important role in synaptic plasticity related to learning and memory. We previously reported that SPARC-related protein containing immunoglobulin domains 1 (SPIG1, also known as Follistatin-like protein 4, FSTL4) binds to pro-BDNF and negatively regulates BDNF maturation; however, its neurological functions, particularly in learning and memory, have not yet been elucidated. We herein examined the electrophysiological and behavioral phenotypes of Spig1-knockout (Spig1-KO) mice. Adult Spig1-KO mice exhibited greater excitability and facilitated long-term potentiation (LTP) in the CA1 region of hippocampal slices than age- and sex-matched wild-type (WT) mice. Facilitated LTP was reduced to the level of WT by the bath application of an anti-BDNF antibody to hippocampal slices. A step-through inhibitory avoidance learning paradigm revealed that the extinction of aversive memories was significantly enhanced in adult Spig1-KO mice, while they showed the normal acquisition of aversive memories; besides, spatial reference memory formation was also normal in the standard Morris water maze task. An intracerebroventricular (icv) injection of anti-BDNF in the process of extinction learning transiently induced the recurrence of aversive memories in Spig1-KO mice, but exerted no effects in WT mice. These results indicate a critical role for SPIG1 in BDNF-mediated synaptic plasticity in extinction of inhibitory avoidance memory.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Extinción Psicológica/fisiología , Proteínas Relacionadas con la Folistatina/fisiología , Potenciación a Largo Plazo , Animales , Condicionamiento Clásico , Electrochoque , Proteínas Relacionadas con la Folistatina/genética , Hipocampo/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Transmisión Sináptica
18.
PLoS One ; 12(12): e0189164, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29216327

RESUMEN

Chondroitin sulfate proteoglycans (CSPGs), which are enriched in demyelinating plaques in neurodegenerative diseases, such as multiple sclerosis (MS), impair remyelination by inhibiting the migration and differentiation of oligodendrocyte precursor cells (OPCs) in the central nervous system (CNS). We herein show that protamine (PRM, also known as a heparin antagonist) effectively neutralizes the inhibitory activities of CSPGs, thereby enhancing OPC differentiation and (re)myelination in mice. Cell-based assays using mouse OPC-like OL1 cells revealed that the PRM treatment exerted masking effects on extracellular CSPGs and improved oligodendrocyte differentiation on inhibitory CSPG-coated substrates. PRM also bound to the extracellular region of protein tyrosine phosphatase receptor type Z (PTPRZ), a membrane-spanning CSPG predominantly expressed in OPCs, and functioned as a ligand mimetic of PTPRZ, thereby suppressing its negative regulatory activity on oligodendrocyte differentiation. In primary cultures, the differentiation of OPCs from wild-type and Ptprz-deficient mice was equally enhanced by PRM. Moreover, the intranasal administration of PRM accelerated myelination in the developing mouse brain, and its intracerebroventricular administration stimulated remyelination after cuprizone-induced demyelination. These results indicate that PRM has CSPG-neutralizing activity which promotes oligodendrocyte differentiation under developmental and morbid conditions.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Oligodendroglía/citología , Protaminas/farmacología , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Ratones , Vaina de Mielina/metabolismo
19.
Elife ; 62017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29157358

RESUMEN

Local regulation of synaptic efficacy is thought to be important for proper networking of neurons and memory formation. Dysregulation of global translation influences long-term memory in mice, but the relevance of the regulation specific for local translation by RNA granules remains elusive. Here, we demonstrate roles of RNG105/caprin1 in long-term memory formation. RNG105 deletion in mice impaired synaptic strength and structural plasticity in hippocampal neurons. Furthermore, RNG105-deficient mice displayed unprecedentedly severe defects in long-term memory formation in spatial and contextual learning tasks. Genome-wide profiling of mRNA distribution in the hippocampus revealed an underlying mechanism: RNG105 deficiency impaired the asymmetric somato-dendritic localization of mRNAs. Particularly, RNG105 deficiency reduced the dendritic localization of mRNAs encoding regulators of AMPAR surface expression, which was consistent with attenuated homeostatic AMPAR scaling in dendrites and reduced synaptic strength. Thus, RNG105 has an essential role, as a key regulator of dendritic mRNA localization, in long-term memory formation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Dendritas/metabolismo , Hipocampo/fisiología , Memoria a Largo Plazo , ARN Mensajero/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Eliminación de Gen , Expresión Génica , Perfilación de la Expresión Génica , Aprendizaje , Ratones , Receptores de Glutamato/biosíntesis
20.
Clin Pediatr Endocrinol ; 26(4): 197-205, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29026268

RESUMEN

Adipsic hypernatremia is a rare disease presenting as persistent hypernatremia with disturbance of thirst regulation and hypothalamic dysfunction. As a result of congenital disease, tumors, or inflammation, most cases are accompanied by structural abnormalities in the hypothalamic-pituitary area. While cases with no hypothalamic-pituitary structural lesion have been reported, their etiology has not been elucidated. Recently, we reported three patients with adipsic hypernatremia whose serum-derived immunoglobulin (Ig) specifically reacted with mouse subfornical organ (SFO) tissue. As one of the circumventricular organs (CVOs) that form a sensory interface between the blood and brain, the SFO is a critical site for generating physiological responses to dehydration and hypernatremia. Intravenous injection of the patient's Ig fraction induced hypernatremia in mice, along with inflammation and apoptosis in the SFO. These results support a new autoimmunity-related mechanism for inducing adipsic hypernatremia without demonstrable hypothalamic-pituitary structural lesions. In this review, we aim to highlight the characteristic clinical features of these patients, in addition to etiological mechanisms related to SFO function. These findings may be useful for diagnosing adipsic hypernatremia caused by an autoimmune response to the SFO, and support development of new strategies for prevention and treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...