Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Res Sq ; 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37609150

RESUMEN

The predicted brain age minus the chronological age ('brain-PAD') could become a clinical biomarker. However, most brain age methods were developed to use research-grade high-resolution T1-weighted MRIs, limiting their applicability to clinical-grade MRIs from multiple protocols. To overcome this, we adopted a double transfer learning approach to develop a brain age model agnostic to modality, resolution, or slice orientation. Using 6,224 clinical MRIs among 7 modalities, scanned from 1,540 patients using 8 scanners among 15 + facilities of the University of Florida's Health System, we retrained a convolutional neural network (CNN) to predict brain age from synthetic research-grade magnetization-prepared rapid gradient-echo MRIs (MPRAGEs) generated by a deep learning-trained 'super-resolution' method. We also modeled the "regression dilution bias", a typical overestimation of younger ages and underestimation of older ages, which correction is paramount for personalized brain age-based biomarkers. This bias was independent of modality or scanner and generalizable to new samples, allowing us to add a bias-correction layer to the CNN. The mean absolute error in test samples was 4.67-6.47 years across modalities, with similar accuracy between original MPRAGEs and their synthetic counterparts. Brain-PAD was also reliable across modalities. We demonstrate the feasibility of clinical-grade brain age predictions, contributing to personalized medicine.

2.
Contemp Clin Trials Commun ; 32: 101066, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36712186

RESUMEN

Approximately 1.71 billion people globally live with musculoskeletal pain conditions, including low back pain, knee pain, and neck pain Cieza et al. (2020). In the US, an estimated 20.4% of U.S. adult had chronic pain and 8.0% of U.S. adults had high-impact chronic pain, with higher prevalence associated with advancing age Dahlhamer et al. (2018). On the other hand, between 50 and 70 million US adults have a sleep disorder (American Sleep Association). Although the link between sleep and pain is widely established, the neurobiological mechanisms underlying this relationship have yet to be fully elucidated, specifically within an aged population. As currently available sleep and chronic pain therapies are only partially effective, novel treatment approaches are urgently needed. Given the potential mechanistic role of γ-aminobutyric acid (GABA) in both conditions, and the availability of GABA supplements over the counter, the present proposal will determine the feasibility and acceptability of oral GABA administration in middle-to-older aged adults with chronic pain and sleep disorders as well as characterize the potential neurobiological mechanisms involved in both conditions. Results from the present investigation using a parallel, double-blinded, placebo-controlled study will provide novel preliminary information needed for future translational pain and sleep research.

3.
Front Neurosci ; 16: 882322, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117614

RESUMEN

Context: Vitamin D is an essential, fat soluble micronutrient long-known for its effects on calcium homeostasis and bone health. With advances in technology, it is being discovered that Vitamin D exerts its effects beyond the musculoskeletal system. Vitamin D has since been noted in nervous system health and functioning, and is becoming a target of interest in brain health, aging, and chronic pain outcomes. Objectives: We and others have previously shown that deficient Vitamin D status is associated with greater pain severity across a variety of conditions, however the reason as to why this relationship exists is still being understood. Here, we sought to examine associations between Vitamin D status and brain structure in those with chronic knee pain. Methods: Structural MRI imaging techniques and whole brain analyses were employed and serum Vitamin D were collected on 140 participants with chronic pain. Covariates included age, sex, race and site, as these data were collected at two separate institutions. ANOVAs using the clinical cut points for Vitamin D status (deficient, insufficient, and optimal) as well as continuous regression-based Vitamin D effects were employed to observe differences in brain volume. P-value was set to 0.017 after correction for multiple comparisons. Results: We discovered that individuals in our sample (age = 50+; 63.6% female; 52.1% Non-Hispanic Black) who were either clinically deficient (<20 ng/mL) or insufficient (20-30 ng/mL) in serum Vitamin D had significant differences in the gray matter of the left circular insular cortex, left inferior temporal gyrus, right middle temporal gyrus, as well as decreased white matter surface area in the right inferior temporal gyrus compared to those considered to have optimal levels (>30 ng/mL) of serum Vitamin D. Conclusion: Evidence from these data suggests that Vitamin D, or lack thereof, may be associated with pain outcomes by mediating changes in regions of the brain known to process and interpret pain. More research understanding this phenomenon as well as the effects of Vitamin D supplementation is warranted.

4.
Epigenetics ; 17(13): 2178-2187, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35950599

RESUMEN

Chronic musculoskeletal pain is a health burden that may accelerate the aging process. Accelerated brain aging and epigenetic aging have separately been observed in those with chronic pain. However, it is unknown whether these biological markers of aging are associated with each other in those with chronic pain. We aimed to explore the association of epigenetic aging and brain aging in middle-to-older age individuals with varying degrees of knee pain. Participants (57.91 ± 8.04 y) with low impact knee pain (n = 95), high impact knee pain (n = 53), and pain-free controls (n = 26) completed self-reported pain, a blood draw, and an MRI scan. We used an epigenetic clock previously associated with knee pain (DNAmGrimAge), the subsequent difference of predicted epigenetic and brain age from chronological age (DNAmGrimAge-Difference and Brain-PAD, respectively). There was a significant main effect for pain impact group (F (2,167) = 3.847, P = 0.023, rotational energy = 1/2Iω2 = 0.038, ANCOVA) on Brain-PAD and DNAmGrimAge-difference (F (2,167) = 6.800, P = 0.001, I = mk2 = 0.075, ANCOVA) after controlling for covariates. DNAmGrimAge-Difference and Brain-PAD were modestly correlated (r =0.198; P =0.010). Exploratory analysis revealed that DNAmGrimAge-difference mediated GCPS pain impact, GCPS pain severity, and pain-related disability scores on Brain-PAD. Based upon the current study findings, we suggest that pain could be a driver for accelerated brain aging via epigenome interactions.


Asunto(s)
Dolor Crónico , Humanos , Anciano , Metilación de ADN , Envejecimiento/genética , Encéfalo/diagnóstico por imagen , Epigénesis Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...