Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(3): e25088, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38322909

RESUMEN

Non-Newtonian fluids are essential in situations where heat and mass transfer are involved. Heat and mass transfer processes increase efficiency when nanoparticles (0.01≤φ≤0.03) are added to these fluids. The present study implements a computational approach to investigate the behavior of non-Newtonian nanofluids on the surface of an upright cone. Viscous dissipation (0.3≤Ec≤0.9) and magnetohydrodynamics (MHD) (1≤M≤3) are also taken into account. Furthermore, we explore how microorganisms impact the fluid's mass and heat transfer. The physical model's governing equations are transformed into ordinary differential equations (ODEs) using a similarity transformation to make the analysis easier. The ODEs are solved numerically using the Bvp4c solver in MATLAB. The momentum, thermal, concentration, and microbe diffusion profiles are graphically represented in the current research. MHD (1≤M≤3) effects improve the diffusion of microbes, resulting in increased heat and mass transfer rates of 18 % and 19 %, respectively, based on our results. Furthermore, a comparison of our findings with existing literature demonstrates promising agreement.

2.
Heliyon ; 9(2): e13369, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36825170

RESUMEN

Casson flow ferromagnetic liquid blood flow over stretching region is studied numerically. The domain is influence by radiation and blood flow velocity and thermal slip conditions. Blood acts an impenetrable magneto-dynamic liquid yields governing equations. The conservative governing nonlinear partial differential equations, reduced to ODEs by the help of similarity translation technique. The transport equations were transformed into first order ODEs and the resultant system are solved with help of 4th order R-K scheme. Performing a magnetic dipole with a Casson flow across a stretched region with Brownian motion and Thermophoresis is novelty of the problem. Significant applications of the study in some spheres are metallurgy, extrusion of polymers, production in papers and rubber manufactured sheets. Electronics, analytical instruments, medicine, friction reduction, angular momentum shift, heat transmission, etc. are only few of the many uses for ferromagnetic fluids. As ferromagnetic interaction parameter value improves, the skin-friction, Sherwood and Nusselt numbers depreciates. A comparative study of the present numerical scheme for specific situations reveals a splendid correlation with earlier published work. A change in blood flow velocity magnitude has been noted due to Casson parameter. Increasing change in blood flow temperature noted due to Casson parameter. Skin-friction strengthened and Nusselt number is declined with Casson parameter. The limitation of current work is a non-invasive magnetic blood flow collection system using commercially available magnetic sensors instead of SQUID or electrodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...