Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Alzheimers Dis Rep ; 7(1): 249-262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090958

RESUMEN

Background: Patients with subjective cognitive decline (SCD) report memory deterioration and are at an increased risk of converting to Alzheimer's disease (AD) although psychophysical testing does not reveal any cognitive deficit. Objective: Here, gustatory function is investigated as a potential predictor for an increased risk of progressive cognitive decline indicating higher AD risk in SCD. Methods: Measures of smell and taste perception as well as neuropsychological data were assessed in patients with subjective cognitive decline (SCD): Subgroups with an increased likelihood of the progression to preclinical AD (SCD+) and those with a lower likelihood (SCD-) were compared to healthy controls (HC), patients with mild cognitive impairment and AD patients. The Sniffin' Sticks test contained 12 items with different qualities and taste was measured with 32 taste stripes (sweet, salty, bitter, sour) of different concentration. Results: Only taste was able to distinguish between HC/SCD- and SCD+ patients. Conclusion: This study provides a first hint of taste as a more sensitive marker than smell for detecting preclinical AD in SCD. Longitudinal observation of cognition and pathology are necessary to further evaluate taste perception as a predictor of pathological objective decline in cognition.

2.
NPJ Sci Learn ; 8(1): 2, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609382

RESUMEN

Incentives can decrease performance by undermining intrinsic motivation. How such an interplay of external reinforcers and internal self-regulation influences memory processes, however, is less known. Here, we investigated their interaction on memory performance while learning the meaning of new-words from their context. Specifically, participants inferred congruent meanings of new-words from semantic context (congruent trials) or lack of congruence (incongruent trials), while receiving external feedback in the first or second half of trials only. Removing feedback during learning of congruent word meanings lowered subsequent recognition rates a day later, whereas recognition remained high in the group, which received feedback only in the second half. In contrast, feedback did not substantially alter recognition rates for learning that new-words had no congruent meanings. Our findings suggest that external reinforcers can selectively impair memories if internal self-regulated processes are not already established, but whether they do so depends on what is being learned (specific word-meanings vs. unspecific incongruence). This highlights the relevance of self-regulated learning in education to support stable memory formation.

3.
Hum Brain Mapp ; 44(4): 1389-1406, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36288211

RESUMEN

The natural environment is dynamic and moving objects become constantly occluded, engaging the brain in a challenging completion process to estimate where and when the object might reappear. Although motion extrapolation is critical in daily life-imagine crossing the street while an approaching car is occluded by a larger standing vehicle-its neural underpinnings are still not well understood. While the engagement of low-level visual cortex during dynamic occlusion has been postulated, most of the previous group-level fMRI-studies failed to find evidence for an involvement of low-level visual areas during occlusion. In this fMRI-study, we therefore used individually defined retinotopic maps and multivariate pattern analysis to characterize the neural basis of visible and occluded changes in motion direction in humans. To this end, participants learned velocity-direction change pairings (slow motion-upwards; fast motion-downwards or vice versa) during a training phase without occlusion and judged the change in stimulus direction, based on its velocity, during a following test phase with occlusion. We find that occluded motion direction can be predicted from the activity patterns during visible motion within low-level visual areas, supporting the notion of a mental representation of motion trajectory in these regions during occlusion.


Asunto(s)
Percepción de Movimiento , Corteza Visual , Humanos , Percepción de Movimiento/fisiología , Corteza Visual Primaria , Mapeo Encefálico , Corteza Visual/diagnóstico por imagen , Corteza Visual/fisiología , Encéfalo , Imagen por Resonancia Magnética , Movimiento (Física) , Estimulación Luminosa
4.
Psychol Res ; 86(4): 1239-1251, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34319439

RESUMEN

Expectations about the temporal occurrence of events (when) are often tied with the expectations about certain event-related properties (what and where) happening at these time points. For instance, slowly waking up in the morning we expect our alarm clock to go off; however, the longer we do not hear it the more likely we already missed it. However, most current evidence for complex time-based event-related expectations (TBEEs) is based on the visual modality. Here we tested whether implicit TBEEs can act cross-modally. To this end, visual and auditory stimulus streams were presented which contained early and late targets embedded among distractors (to maximise temporal target uncertainty). Foreperiod-modality-contingencies were manipulated run-wise: visual targets either occurred early in 80% of trials and auditory targets occurred late in 80% of trials or vice versa. Participants showed increased sensitivity for expected auditory early/visual late targets which increased over time while the opposite pattern was observed for visual early/auditory late targets. A benefit in reaction times was only found for auditory early trials. Together, this pattern of results suggests that implicit context-dependent TBEEs for auditory targets after short foreperiods (be they correct or not) dominated and determined which modality became more expected at the late position irrespective of the veridical statistical regularity. Hence, TBEEs in cross-modal and uncertain environments are context-dependent, shaped by the dominant modality in temporal tasks (i.e., auditory) and only boost performance cross-modally when expectations about the event after the short foreperiod match with the run-wise context (i.e., auditory early/visual late).


Asunto(s)
Percepción Auditiva , Motivación , Estimulación Acústica , Humanos , Estimulación Luminosa/métodos , Tiempo de Reacción , Percepción Visual
5.
Vision Res ; 190: 107962, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34757275

RESUMEN

Temporal structures in the environment can shape temporal expectations (TE); and previous studies demonstrated that TEs interact with multisensory interplay (MSI) when multisensory stimuli are presented synchronously. Here, we tested whether other types of MSI - evoked by asynchronous yet temporally flanking irrelevant stimuli - result in similar performance patterns. To this end, we presented sequences of 12 stimuli (10 Hz) which consisted of auditory (A), visual (V) or alternating auditory-visual stimuli (e.g. A-V-A-V-…) with either auditory or visual targets (Exp. 1). Participants discriminated target frequencies (auditory pitch or visual spatial frequency) embedded in these sequences. To test effects of TE, the proportion of early and late temporal target positions was manipulated run-wise. Performance for unisensory targets was affected by temporally flanking distractors, with auditory temporal flankers selectively improving visual target perception (Exp. 1). However, no effect of temporal expectation was observed. Control experiments (Exp. 2-3) tested whether this lack of TE effect was due to the higher presentation frequency in Exp. 1 relative to previous experiments. Importantly, even at higher stimulation frequencies redundant multisensory targets (Exp. 2-3) reliably modulated TEs. Together, our results indicate that visual target detection was enhanced by MSI. However, this cross-modal enhancement - in contrast to the redundant target effect - was still insufficient to generate TEs. We posit that unisensory target representations were either instable or insufficient for the generation of TEs while less demanding MSI still occurred; highlighting the need for robust stimulus representations when generating temporal expectations.


Asunto(s)
Percepción Auditiva , Motivación , Estimulación Acústica , Humanos , Estimulación Luminosa , Percepción Visual
6.
Atten Percept Psychophys ; 83(6): 2551-2573, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33977407

RESUMEN

While temporal expectations (TE) generally improve reactions to temporally predictable events, it remains unknown how the learning of temporal regularities (one time point more likely than another time point) and explicit knowledge about temporal regularities contribute to performance improvements; and whether any contributions generalise across modalities. Here, participants discriminated the frequency of diverging auditory, visual or audio-visual targets embedded in auditory, visual or audio-visual distractor sequences. Temporal regularities were manipulated run-wise (early vs. late target within sequence). Behavioural performance (accuracy, RT) plus measures from a computational learning model all suggest that learning of temporal regularities occurred but did not generalise across modalities, and that dynamics of learning (size of TE effect across runs) and explicit knowledge have little to no effect on the strength of TE. Remarkably, explicit knowledge affects performance-if at all-in a context-dependent manner: Only under complex task regimes (here, unknown target modality) might it partially help to resolve response conflict while it is lowering performance in less complex environments.


Asunto(s)
Aprendizaje , Motivación , Atención , Percepción Auditiva , Humanos , Percepción Visual
7.
Proc Natl Acad Sci U S A ; 117(13): 7409-7417, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32179687

RESUMEN

Taste processing is an essential ability in all animals signaling potential harm or benefit of ingestive behavior. However, current evidence for cortical taste representations remains contradictory. To address this issue, high-resolution functional MRI (fMRI) and multivariate pattern analysis were used to characterize taste-related informational content in human insular cortex, which contains primary gustatory cortex. Human participants judged pleasantness and intensity of low- and high-concentration tastes (salty, sweet, sour, and bitter) in two fMRI experiments on two different days to test for task- and concentration-invariant taste representations. We observed patterns of fMRI activity within insular cortex narrowly tuned to specific tastants consistently across tasks in all participants. Fewer patterns responded to more than one taste category. Importantly, changes in taste concentration altered the spatial layout of putative taste-specific patterns with distinct, almost nonoverlapping patterns for each taste category at different concentration levels. Together, our results point at macroscopic representations in human insular cortex as a complex function of taste category and concentration rather than representations based solely on taste identity.


Asunto(s)
Corteza Cerebral/metabolismo , Percepción del Gusto/fisiología , Gusto/fisiología , Adulto , Mapeo Encefálico/métodos , Femenino , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Análisis Multivariante , Adulto Joven
8.
Eur J Neurosci ; 51(5): 1210-1223, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-29057531

RESUMEN

Task-irrelevant visual stimuli can enhance auditory perception. However, while there is some neurophysiological evidence for mechanisms that underlie the phenomenon, the neural basis of visually induced effects on auditory perception remains unknown. Combining fMRI and EEG with psychophysical measurements in two independent studies, we identified the neural underpinnings and temporal dynamics of visually induced auditory enhancement. Lower- and higher-intensity sounds were paired with a non-informative visual stimulus, while participants performed an auditory detection task. Behaviourally, visual co-stimulation enhanced auditory sensitivity. Using fMRI, enhanced BOLD signals were observed in primary auditory cortex for low-intensity audiovisual stimuli which scaled with subject-specific enhancement in perceptual sensitivity. Concordantly, a modulation of event-related potentials could already be observed over frontal electrodes at an early latency (30-80 ms), which again scaled with subject-specific behavioural benefits. Later modulations starting around 280 ms, that is in the time range of the P3, did not fit this pattern of brain-behaviour correspondence. Hence, the latency of the corresponding fMRI-EEG brain-behaviour modulation points at an early interplay of visual and auditory signals in low-level auditory cortex, potentially mediated by crosstalk at the level of the thalamus. However, fMRI signals in primary auditory cortex, auditory thalamus and the P50 for higher-intensity auditory stimuli were also elevated by visual co-stimulation (in the absence of any behavioural effect) suggesting a general, intensity-independent integration mechanism. We propose that this automatic interaction occurs at the level of the thalamus and might signify a first step of audiovisual interplay necessary for visually induced perceptual enhancement of auditory perception.


Asunto(s)
Corteza Auditiva , Percepción Visual , Estimulación Acústica , Percepción Auditiva , Potenciales Evocados , Humanos , Estimulación Luminosa
9.
Atten Percept Psychophys ; 82(4): 1793-1807, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31875312

RESUMEN

Learning the statistical regularities of environmental events is a powerful tool for enhancing performance. However, it remains unclear whether this often implicit type of behavioral facilitation can be proactively modulated by explicit knowledge about temporal regularities. Only recently, Menceloglu and colleagues (Attention, Perception & Psychophysics, 79(1), 169-179, 2017) tested for differences between implicit versus explicit statistical learning of temporal regularities by using a within-paradigm manipulation of metacognitive temporal knowledge. The authors reported that temporal expectations were enhanced if participants had explicit knowledge about temporal regularities. Here, we attempted to replicate and extend their results, and to provide a mechanistic framework for any effects by means of computational modelling. Participants performed a letter-discrimination task, with target letters embedded in congruent or incongruent flankers. Temporal predictability was manipulated block-wise, with targets occurring more often after either a short or a long delay period. During the delay a sound was presented in half of the trials. Explicit knowledge about temporal regularities was manipulated by changing instructions: Participants received no information (implicit), information about the most likely cue-target delay (explicit), or received 100% valid cues on each trial (highly explicit). We replicated previous effects of target-flanker congruence and sound presence. However, no evidence was found for an effect of explicit knowledge on temporal expectations using Bayesian statistics. Concordantly, computational modelling suggested that explicit knowledge may only influence non-perceptual processing such as response criteria. Together, our results indicate that explicit metacognitive knowledge does not necessarily alter sensory representations or temporal expectations but rather affects response strategies.


Asunto(s)
Atención , Motivación , Teorema de Bayes , Señales (Psicología) , Humanos , Aprendizaje
10.
Elife ; 72018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30160651

RESUMEN

We recently provided evidence that an intrinsic reward-related signal-triggered by successful learning in absence of any external feedback-modulated the entrance of new information into long-term memory via the activation of the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop; Ripollés et al., 2016). Here, we used a double-blind, within-subject randomized pharmacological intervention to test whether this learning process is indeed dopamine-dependent. A group of healthy individuals completed three behavioral sessions of a language-learning task after the intake of different pharmacological treatments: a dopaminergic precursor, a dopamine receptor antagonist or a placebo. Results show that the pharmacological intervention modulated behavioral measures of both learning and pleasantness, inducing memory benefits after 24 hr only for those participants with a high sensitivity to reward. These results provide causal evidence for a dopamine-dependent mechanism instrumental in intrinsically regulated learning and further suggest that subject-specific reward sensitivity drastically alters learning success.


Asunto(s)
Dopamina/metabolismo , Aprendizaje/fisiología , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología , Adulto , Carbidopa/farmacología , Dopaminérgicos/farmacología , Antagonistas de Dopamina/farmacología , Método Doble Ciego , Femenino , Humanos , Aprendizaje/efectos de los fármacos , Levodopa/farmacología , Masculino , Memoria a Largo Plazo/efectos de los fármacos , Memoria a Largo Plazo/fisiología , Recompensa , Risperidona/farmacología , Transducción de Señal/efectos de los fármacos , Adulto Joven
11.
Sci Rep ; 8(1): 10208, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29976998

RESUMEN

Every moment organisms are confronted with complex streams of information which they use to generate a reliable mental model of the world. There is converging evidence for several optimization mechanisms instrumental in integrating (or segregating) incoming information; among them are multisensory interplay (MSI) and temporal expectation (TE). Both mechanisms can account for enhanced perceptual sensitivity and are well studied in isolation; how these two mechanisms interact is currently less well-known. Here, we tested in a series of four psychophysical experiments for TE effects in uni- and multisensory contexts with different levels of modality-related and spatial uncertainty. We found that TE enhanced perceptual sensitivity for the multisensory relative to the best unisensory condition (i.e. multisensory facilitation according to the max-criterion). In the latter TE effects even vanished if stimulus-related spatial uncertainty was increased. Accordingly, computational modelling indicated that TE, modality-related and spatial uncertainty predict multisensory facilitation. Finally, the analysis of stimulus history revealed that matching expectation at trial n-1 selectively improves multisensory performance irrespective of stimulus-related uncertainty. Together, our results indicate that benefits of multisensory stimulation are enhanced by TE especially in noisy environments, which allows for more robust information extraction to boost performance on both short and sustained time ranges.


Asunto(s)
Percepción Auditiva/fisiología , Motivación/fisiología , Percepción Visual/fisiología , Estimulación Acústica , Adulto , Simulación por Computador , Femenino , Humanos , Modelos Teóricos , Ruido , Psicofisiología , Incertidumbre , Adulto Joven
12.
Cognition ; 170: 130-146, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28992555

RESUMEN

Temporal regularities can guide our attention to focus on a particular moment in time and to be especially vigilant just then. Previous research provided evidence for the influence of temporal expectation on perceptual processing in unisensory auditory, visual, and tactile contexts. However, in real life we are often exposed to a complex and continuous stream of multisensory events. Here we tested - in a series of experiments - whether temporal expectations can enhance perception in multisensory contexts and whether this enhancement differs from enhancements in unisensory contexts. Our discrimination paradigm contained near-threshold targets (subject-specific 75% discrimination accuracy) embedded in a sequence of distractors. The likelihood of target occurrence (early or late) was manipulated block-wise. Furthermore, we tested whether spatial and modality-specific target uncertainty (i.e. predictable vs. unpredictable target position or modality) would affect temporal expectation (TE) measured with perceptual sensitivity (d') and response times (RT). In all our experiments, hidden temporal regularities improved performance for expected multisensory targets. Moreover, multisensory performance was unaffected by spatial and modality-specific uncertainty, whereas unisensory TE effects on d' but not RT were modulated by spatial and modality-specific uncertainty. Additionally, the size of the temporal expectation effect, i.e. the increase in perceptual sensitivity and decrease of RT, scaled linearly with the likelihood of expected targets. Finally, temporal expectation effects were unaffected by varying target position within the stream. Together, our results strongly suggest that participants quickly adapt to novel temporal contexts, that they benefit from multisensory (relative to unisensory) stimulation and that multisensory benefits are maximal if the stimulus-driven uncertainty is highest. We propose that enhanced informational content (i.e. multisensory stimulation) enables the robust extraction of temporal regularities which in turn boost (uni-)sensory representations.


Asunto(s)
Anticipación Psicológica/fisiología , Percepción Auditiva/fisiología , Reconocimiento Visual de Modelos/fisiología , Desempeño Psicomotor/fisiología , Percepción del Tiempo/fisiología , Incertidumbre , Adulto , Humanos , Adulto Joven
13.
J Neurosci ; 37(46): 11101-11113, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29025925

RESUMEN

Learning the associations between words and meanings is a fundamental human ability. Although the language network is cortically well defined, the role of the white matter pathways supporting novel word-to-meaning mappings remains unclear. Here, by using contextual and cross-situational word learning, we tested whether learning the meaning of a new word is related to the integrity of the language-related white matter pathways in 40 adults (18 women). The arcuate, uncinate, inferior-fronto-occipital and inferior-longitudinal fasciculi were virtually dissected using manual and automatic deterministic fiber tracking. Critically, the automatic method allowed assessing the white matter microstructure along the tract. Results demonstrate that the microstructural properties of the left inferior-longitudinal fasciculus predict contextual learning, whereas the left uncinate was associated with cross-situational learning. In addition, we identified regions of special importance within these pathways: the posterior middle temporal gyrus, thought to serve as a lexical interface and specifically related to contextual learning; the anterior temporal lobe, known to be an amodal hub for semantic processing and related to cross-situational learning; and the white matter near the hippocampus, a structure fundamental for the initial stages of new-word learning and, remarkably, related to both types of word learning. No significant associations were found for the inferior-fronto-occipital fasciculus or the arcuate. While previous results suggest that learning new phonological word forms is mediated by the arcuate fasciculus, these findings show that the temporal pathways are the crucial neural substrate supporting one of the most striking human abilities: our capacity to identify correct associations between words and meanings under referential indeterminacy.SIGNIFICANCE STATEMENT The language-processing network is cortically (i.e., gray matter) well defined. However, the role of the white matter pathways that support novel word learning within this network remains unclear. In this work, we dissected language-related (arcuate, uncinate, inferior-fronto-occipital, and inferior-longitudinal) fasciculi using manual and automatic tracking. We found the left inferior-longitudinal fasciculus to be predictive of word-learning success in two word-to-meaning tasks: contextual and cross-situational learning paradigms. The left uncinate was predictive of cross-situational word learning. No significant correlations were found for the arcuate or the inferior-fronto-occipital fasciculus. While previous results showed that learning new phonological word forms is supported by the arcuate fasciculus, these findings demonstrate that learning new word-to-meaning associations is mainly dependent on temporal white matter pathways.


Asunto(s)
Aprendizaje/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Semántica , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología , Adulto , Mapeo Encefálico/métodos , Femenino , Predicción , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Desempeño Psicomotor/fisiología , Distribución Aleatoria , Adulto Joven
14.
Neuroimage ; 162: 257-268, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28889003

RESUMEN

Cross-modal recalibration allows the brain to maintain coherent sensory representations of the world. Using functional magnetic resonance imaging (fMRI), the present study aimed at identifying the neural mechanisms underlying recalibration in an audiovisual ventriloquism aftereffect paradigm. Participants performed a unimodal sound localization task, before and after they were exposed to adaptation blocks, in which sounds were paired with spatially disparate visual stimuli offset by 14° to the right. Behavioral results showed a significant rightward shift in sound localization following adaptation, indicating a ventriloquism aftereffect. Regarding fMRI results, left and right planum temporale (lPT/rPT) were found to respond more to contralateral sounds than to central sounds at pretest. Contrasting posttest with pretest blocks revealed significantly enhanced fMRI-signals in space-sensitive lPT after adaptation, matching the behavioral rightward shift in sound localization. Moreover, a region-of-interest analysis in lPT/rPT revealed that the lPT activity correlated positively with the localization shift for right-side sounds, whereas rPT activity correlated negatively with the localization shift for left-side and central sounds. Finally, using functional connectivity analysis, we observed enhanced coupling of the lPT with left and right inferior parietal areas as well as left motor regions following adaptation and a decoupling of lPT/rPT with contralateral auditory cortex, which scaled with participants' degree of adaptation. Together, the fMRI results suggest that cross-modal spatial recalibration is accomplished by an adjustment of unisensory representations in low-level auditory cortex. Such persistent adjustments of low-level sensory representations seem to be mediated by the interplay with higher-level spatial representations in parietal cortex.


Asunto(s)
Corteza Auditiva/fisiología , Localización de Sonidos/fisiología , Estimulación Acústica , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
15.
Hum Brain Mapp ; 38(6): 2897-2912, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28294458

RESUMEN

Several previous imaging studies have aimed at identifying the neural basis of visual food cue processing in humans. However, there is little consistency of the functional magnetic resonance imaging (fMRI) results across studies. Here, we tested the hypothesis that this variability across studies might - at least in part - be caused by the different tasks employed. In particular, we assessed directly the influence of task set on brain responses to food stimuli with fMRI using two tasks (colour vs. edibility judgement, between-subjects design). When participants judged colour, the left insula, the left inferior parietal lobule, occipital areas, the left orbitofrontal cortex and other frontal areas expressed enhanced fMRI responses to food relative to non-food pictures. However, when judging edibility, enhanced fMRI responses to food pictures were observed in the superior and middle frontal gyrus and in medial frontal areas including the pregenual anterior cingulate cortex and ventromedial prefrontal cortex. This pattern of results indicates that task sets can significantly alter the neural underpinnings of food cue processing. We propose that judging low-level visual stimulus characteristics - such as colour - triggers stimulus-related representations in the visual and even in gustatory cortex (insula), whereas discriminating abstract stimulus categories activates higher order representations in both the anterior cingulate and prefrontal cortex. Hum Brain Mapp 38:2897-2912, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Señales (Psicología) , Alimentos , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Juicio , Imagen por Resonancia Magnética , Masculino , Estimulación Luminosa , Percepción Visual/fisiología , Adulto Joven
16.
Elife ; 52016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27644419

RESUMEN

Humans constantly learn in the absence of explicit rewards. However, the neurobiological mechanisms supporting this type of internally-guided learning (without explicit feedback) are still unclear. Here, participants who completed a task in which no external reward/feedback was provided, exhibited enhanced fMRI-signals within the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop) when successfully grasping the meaning of new-words. Importantly, new-words that were better remembered showed increased activation and enhanced functional connectivity between the midbrain, hippocampus, and ventral striatum. Moreover, enhanced emotion-related physiological measures and subjective pleasantness ratings during encoding were associated with remembered new-words after 24 hr. Furthermore, increased subjective pleasantness ratings were also related to new-words remembered after seven days. These results suggest that intrinsic-potentially reward-related-signals, triggered by self-monitoring of correct performance, can promote the storage of new information into long-term memory through the activation of the SN/VTA-Hippocampal loop, possibly via dopaminergic modulation of the midbrain.


Asunto(s)
Hipocampo/fisiología , Aprendizaje , Memoria , Mesencéfalo/fisiología , Estriado Ventral/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
17.
PLoS One ; 11(5): e0155206, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27167979

RESUMEN

The parapontine nucleus of the thalamus (PPN) is a neuromodulatory midbrain structure with widespread connectivity to cortical and subcortical motor structures, as well as the spinal cord. The PPN also projects to the thalamus, including visual relay nuclei like the LGN and the pulvinar. Moreover, there is intense connectivity with sensory structures of the tegmentum in particular with the superior colliculus (SC). Given the existence and abundance of projections to visual sensory structures, it is likely that activity in the PPN has some modulatory influence on visual sensory selection. Here we address this possibility by measuring the visual discrimination performance (luminance contrast thresholds) in a group of patients with Parkinson's Disease (PD) treated with deep-brain stimulation (DBS) of the PPN to control gait and postural motor deficits. In each patient we measured the luminance-contrast threshold of being able to discriminate an orientation-target (Gabor-grating) as a function of stimulation frequency (high 60Hz, low 8/10, no stimulation). Thresholds were determined using a standard staircase-protocol that is based on parameter estimation by sequential testing (PEST). We observed that under low frequency stimulation thresholds increased relative to no and high frequency stimulation in five out of six patients, suggesting that DBS of the PPN has a frequency-dependent impact on visual selection processes at a rather elementary perceptual level.


Asunto(s)
Sensibilidad de Contraste , Estimulación Encefálica Profunda/métodos , Red Nerviosa/fisiopatología , Enfermedad de Parkinson/terapia , Núcleo Tegmental Pedunculopontino/fisiopatología , Anciano , Femenino , Marcha , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/patología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Núcleo Tegmental Pedunculopontino/patología , Equilibrio Postural , Colículos Superiores/patología , Colículos Superiores/fisiopatología , Tálamo/patología , Tálamo/fisiopatología
18.
Curr Biol ; 24(21): 2606-11, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25447993

RESUMEN

The exact neural processes behind humans' drive to acquire a new language--first as infants and later as second-language learners--are yet to be established. Recent theoretical models have proposed that during human evolution, emerging language-learning mechanisms might have been glued to phylogenetically older subcortical reward systems, reinforcing human motivation to learn a new language. Supporting this hypothesis, our results showed that adult participants exhibited robust fMRI activation in the ventral striatum (VS)--a core region of reward processing--when successfully learning the meaning of new words. This activation was similar to the VS recruitment elicited using an independent reward task. Moreover, the VS showed enhanced functional and structural connectivity with neocortical language areas during successful word learning. Together, our results provide evidence for the neural substrate of reward and motivation during word learning. We suggest that this strong functional and anatomical coupling between neocortical language regions and the subcortical reward system provided a crucial advantage in humans that eventually enabled our lineage to successfully acquire linguistic skills.


Asunto(s)
Desarrollo del Lenguaje , Lenguaje , Recompensa , Mapeo Encefálico , Humanos , Aprendizaje/fisiología , Imagen por Resonancia Magnética , Motivación , Aprendizaje Verbal
19.
Neuroimage ; 98: 425-34, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24814210

RESUMEN

An essential task of our perceptual systems is to bind together the distinctive features of single objects and events into unitary percepts, even when those features are registered in different sensory modalities. In cases where auditory and visual inputs are spatially incongruent, they may still be perceived as belonging to a single event at the location of the visual stimulus - a phenomenon known as the 'ventriloquist illusion'. The present study examined how audio-visual temporal congruence influences the ventriloquist illusion and characterized its neural underpinnings with functional magnetic resonance imaging (fMRI). Behaviorally, the ventriloquist illusion was reduced for asynchronous versus synchronous audio-visual stimuli, in accordance with previous reports. Neural activity patterns associated with the ventriloquist effect were consistently observed in the planum temporale (PT), with a reduction in illusion-related fMRI-signals ipsilateral to visual stimulation for central sounds perceived peripherally and a contralateral increase in illusion-related fMRI-signals for peripheral sounds perceived centrally. Moreover, it was found that separate but adjacent regions within the PT were preferentially activated for ventriloquist illusions produced by synchronous and asynchronous audio-visual stimulation. We conclude that the left-right balance of neural activity in the PT represents the neural code that underlies the ventriloquist illusion, with greater activity in the cerebral hemisphere contralateral to the direction of the perceived shift of sound location.


Asunto(s)
Corteza Auditiva/fisiología , Ilusiones/fisiología , Localización de Sonidos/fisiología , Percepción Visual/fisiología , Estimulación Acústica , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Estimulación Luminosa , Adulto Joven
20.
Commun Integr Biol ; 4(4): 378-81, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21966551

RESUMEN

In everyday life our brain often receives information about events and objects in the real world via several sensory modalities, because natural objects often stimulate more than one sense. These different types of information are processed in our brain along different sensory-specific pathways, but are finally integrated into a unified percept. During the last years, studies provided compelling evidence that the neural basis of multisensory integration is not restricted to higher association areas of the cortex, but can already occur at low-level stages of sensory cortical processing and even in subcortical structures. In this article we will review the potential role of several thalamic structures in multisensory interplay and discuss their extensive anatomical connections with sensory-specific and multisensory cortical structures. We conclude that sensory-specific thalamic structures may act as a crucial processing node of multisensory interplay in addition to their traditional role as sensory relaying structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...