Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Bioengineering (Basel) ; 11(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38671745

RESUMEN

The Philips Visual Patient Avatar, a user-centered visualization technology, offers an alternative approach to patient monitoring. Computer-based simulation studies indicate that it increases diagnostic accuracy and confidence, while reducing perceived workload. About three months after the technology's integration into clinical practice, we conducted an assessment among anesthesia providers to determine their views on its strengths, limitations, and overall perceptions. This single-center qualitative study at the University Hospital of Zurich examined anesthesia providers' perceptions of the Philips Visual Patient Avatar after its implementation. The study included an online survey to identify medical personnel's opinions on the technology's strengths and areas for improvement, which were analyzed using thematic analysis. A total of 63 of the 377 invited anesthesia providers (16.7%) responded to the survey. Overall, 163 comments were collected. The most prevalent positive themes were good presentation of specific parameters (16/163; 9.8%) and quick overview/rapid identification of problems (15/163; 9.2%). The most common perceived area for improvement was the ability to adjust the visualization thresholds of Visual Patient Avatar, which represent the physiological upper and lower vital-sign limits (33/163; 20.3%). The study showed that users consider Philips Visual Patient Avatar a valuable asset in anesthesia, allowing for easier identification of underlying problems. However, the study also revealed a user desire for the ability to freely adjust the thresholds of the Visual Patient Avatar by the handling caregivers, which were fixed to the departmental standard during the study.

2.
Children (Basel) ; 10(12)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38136043

RESUMEN

The Philips Visual Patient Avatar represents an alternative method of patient monitoring that, according to computer-based simulation studies, enhances diagnostic accuracy and confidence and reduces workload. After its clinical integration, we assessed pediatric anesthesia providers' perspectives on this technology. This is a single-center qualitative study, conducted at the University Hospital Zurich using in-depth individual interviews. We aimed to identify the advantages and limitations of the Visual Patient Avatar in pediatric anesthesia and to assess children's and parents' reactions from caregivers' perspectives. Thematic analysis was used to identify the dominant themes. Fourteen members of the institution's pediatric anesthesia team were interviewed. The most prevalent themes were children's positive reactions towards the Visual Patient Avatar (92.9%) and enhanced speed in problem identification (71.4%). Additionally, 50% of participants reported finding the Visual Patient Avatar useful for diverting children's attention during anesthesia induction, and 50% suggested that its vital sign thresholds should be adaptable for different age groups. The study revealed that the Visual Patient Avatar was recognized as a tool in pediatric anesthesia, enabling prompt identification of underlying issues and receiving positive feedback from both children and parents. The most commonly voiced wish for improvement in the study was the ability to customize the Visual Patient Avatar's thresholds for different age groups.

3.
Diagnostics (Basel) ; 13(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37892102

RESUMEN

BACKGROUND: Machine learning can analyze vast amounts of data and make predictions for events in the future. Our group created machine learning models for vital sign predictions. To transport the information of these predictions without numbers and numerical values and make them easily usable for human caregivers, we aimed to integrate them into the Philips Visual-Patient-avatar, an avatar-based visualization of patient monitoring. METHODS: We conducted a computer-based simulation study with 70 participants in 3 European university hospitals. We validated the vital sign prediction visualizations by testing their identification by anesthesiologists and intensivists. Each prediction visualization consisted of a condition (e.g., low blood pressure) and an urgency (a visual indication of the timespan in which the condition is expected to occur). To obtain qualitative user feedback, we also conducted standardized interviews and derived statements that participants later rated in an online survey. RESULTS: The mixed logistic regression model showed 77.9% (95% CI 73.2-82.0%) correct identification of prediction visualizations (i.e., condition and urgency both correctly identified) and 93.8% (95% CI 93.7-93.8%) for conditions only (i.e., without considering urgencies). A total of 49 out of 70 participants completed the online survey. The online survey participants agreed that the prediction visualizations were fun to use (32/49, 65.3%), and that they could imagine working with them in the future (30/49, 61.2%). They also agreed that identifying the urgencies was difficult (32/49, 65.3%). CONCLUSIONS: This study found that care providers correctly identified >90% of the conditions (i.e., without considering urgencies). The accuracy of identification decreased when considering urgencies in addition to conditions. Therefore, in future development of the technology, we will focus on either only displaying conditions (without urgencies) or improving the visualizations of urgency to enhance usability for human users.

4.
J Med Internet Res ; 25: e43895, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37824182

RESUMEN

BACKGROUND: Guidelines recommend using viscoelastic coagulation tests to guide coagulation management, but interpreting the results remains challenging. Visual Clot, a 3D animated blood clot, facilitates interpretation through a user-centered and situation awareness-oriented design. OBJECTIVE: This study aims to compare the effects of Visual Clot versus conventional viscoelastic test results (rotational thrombelastometry [ROTEM] temograms) on the coagulation management performance of anesthesia teams in critical bleeding situations. METHODS: We conducted a prospective, randomized, high-fidelity simulation study in which anesthesia teams (consisting of a senior anesthesiologist, a resident anesthesiologist, and an anesthesia nurse) managed perioperative bleeding scenarios. Teams had either Visual Clot or ROTEM temograms available to perform targeted coagulation management. We analyzed the 15-minute simulations with post hoc video analysis. The primary outcome was correct targeted coagulation therapy. Secondary outcomes were time to targeted coagulation therapy, confidence, and workload. In addition, we have conducted a qualitative survey on user acceptance of Visual Clot. We used Poisson regression, Cox regression, and mixed logistic regression models, adjusted for various potential confounders, to analyze the data. RESULTS: We analyzed 59 simulations. Teams using Visual Clot were more likely to deliver the overall targeted coagulation therapy correctly (rate ratio 1.56, 95% CI 1.00-2.47; P=.05) and administer the first targeted coagulation product faster (hazard ratio 2.58, 95% CI 1.37-4.85; P=.003). In addition, participants showed higher decision confidence with Visual Clot (odds ratio 3.60, 95% CI 1.49-8.71; P=.005). We found no difference in workload (coefficient -0.03, 95% CI -3.08 to 2.88; P=.99). CONCLUSIONS: Using Visual Clot led to a more accurate and faster-targeted coagulation therapy than using ROTEM temograms. We suggest that relevant viscoelastic test manufacturers consider augmenting their complex result presentation with intuitive, easy-to-understand visualization to ease users' burden from unnecessary cognitive load and enhance patient care.


Asunto(s)
Enseñanza Mediante Simulación de Alta Fidelidad , Trombosis , Humanos , Tromboelastografía/métodos , Estudios Prospectivos , Coagulación Sanguínea , Trombosis/terapia
5.
Bioengineering (Basel) ; 10(3)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36978684

RESUMEN

Acid-base homeostasis is crucial for all physiological processes in the body and is evaluated using arterial blood gas (ABG) analysis. Screens or printouts of ABG results require the interpretation of many textual elements and numbers, which may delay intuitive comprehension. To optimise the presentation of the results for the specific strengths of human perception, we developed Visual Blood, an animated virtual model of ABG results. In this study, we compared its performance with a conventional result printout. Seventy physicians from three European university hospitals participated in a computer-based simulation study. Initially, after an educational video, we tested the participants' ability to assign individual Visual Blood visualisations to their corresponding ABG parameters. As the primary outcome, we tested caregivers' ability to correctly diagnose simulated clinical ABG scenarios with Visual Blood or conventional ABG printouts. For user feedback, participants rated their agreement with statements at the end of the study. Physicians correctly assigned 90% of the individual Visual Blood visualisations. Regarding the primary outcome, the participants made the correct diagnosis 86% of the time when using Visual Blood, compared to 68% when using the conventional ABG printout. A mixed logistic regression model showed an odds ratio for correct diagnosis of 3.4 (95%CI 2.00-5.79, p < 0.001) and an odds ratio for perceived diagnostic confidence of 1.88 (95%CI 1.67-2.11, p < 0.001) in favour of Visual Blood. A linear mixed model showed a coefficient for perceived workload of -3.2 (95%CI -3.77 to -2.64) in favour of Visual Blood. Fifty-one of seventy (73%) participants agreed or strongly agreed that Visual Blood was easy to use, and fifty-five of seventy (79%) agreed that it was fun to use. In conclusion, Visual Blood improved physicians' ability to diagnose ABG results. It also increased perceived diagnostic confidence and reduced perceived workload. This study adds to the growing body of research showing that decision-support tools developed around human cognitive abilities can streamline caregivers' decision-making and may improve patient care.

6.
Bioengineering (Basel) ; 10(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36978731

RESUMEN

Interpreting blood gas analysis results can be challenging for the clinician, especially in stressful situations under time pressure. To foster fast and correct interpretation of blood gas results, we developed Visual Blood. This computer-based, multicentre, noninferiority study compared Visual Blood and conventional arterial blood gas (ABG) printouts. We presented six scenarios to anaesthesiologists, once with Visual Blood and once with the conventional ABG printout. The primary outcome was ABG parameter perception. The secondary outcomes included correct clinical diagnoses, perceived diagnostic confidence, and perceived workload. To analyse the results, we used mixed models and matched odds ratios. Analysing 300 within-subject cases, we showed noninferiority of Visual Blood compared to ABG printouts concerning the rate of correctly perceived ABG parameters (rate ratio, 0.96; 95% CI, 0.92-1.00; p = 0.06). Additionally, the study revealed two times higher odds of making the correct clinical diagnosis using Visual Blood (OR, 2.16; 95% CI, 1.42-3.29; p < 0.001) than using ABG printouts. There was no or, respectively, weak evidence for a difference in diagnostic confidence (OR, 0.84; 95% CI, 0.58-1.21; p = 0.34) and perceived workload (Coefficient, 2.44; 95% CI, -0.09-4.98; p = 0.06). This study showed that participants did not perceive the ABG parameters better, but using Visual Blood resulted in more correct clinical diagnoses than using conventional ABG printouts. This suggests that Visual Blood allows for a higher level of situation awareness beyond individual parameters' perception. However, the study also highlighted the limitations of today's virtual reality headsets and Visual Blood.

7.
Bioengineering (Basel) ; 10(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36978777

RESUMEN

Viscoelastic point-of-care haemostatic resuscitation methods, such as ROTEM or TEG, are crucial in deciding on time-efficient personalised coagulation interventions. International transfusion guidelines emphasise increased patient safety and reduced treatment costs. We analysed care providers' perceptions of ROTEM to identify perceived strengths and areas for improvement. We conducted a single-centre, mixed qualitative-quantitative study consisting of interviews followed by an online survey. Using a template approach, we first identified themes in the responses given by care providers about ROTEM. Later, the participants rated six statements based on the identified themes on five-point Likert scales in an online questionnaire. Seventy-seven participants were interviewed, and 52 completed the online survey. By analysing user perceptions, we identified ten themes. The most common positive theme was "high accuracy". The most common negative theme was "need for training". In the online survey, 94% of participants agreed that monitoring the real-time ROTEM temograms helps to initiate targeted treatment more quickly and 81% agreed that recurrent ROTEM training would be beneficial. Anaesthesia care providers found ROTEM to be accurate and quickly available to support decision-making in dynamic and complex haemostatic situations. However, clinicians identified that interpreting ROTEM is a complex and cognitively demanding task that requires significant training needs.

8.
BMC Anesthesiol ; 22(1): 167, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637450

RESUMEN

BACKGROUND: Cognitive ergonomics design of patient monitoring may reduce human factor errors in high-stress environments. Eye-tracking is a suitable tool to gain insight into the distribution of visual attention of healthcare professionals with patient monitors, which may facilitate their further development. METHODS: This prospective, exploratory, high-fidelity simulation study compared anesthesia personnel's visual attention (fixation count and dwell-time) to 15 areas of interest on the patient monitor during non-critical and critical anesthesia situations. Furthermore, we examined the extent to which participants' experience influenced visual attention and which vital signs displayed on the patient monitor received the most visual attention. We used mixed zero-inflated Poisson regression and mixed linear models to analyze the data. RESULTS: Analyzing 23 ten-minute scenarios, we found significantly more fixations to the areas of interest on the patient monitor during critical than non-critical situations (rate ratio of 1.45; 95% CI 1.33 to 1.59; p < 0.001). However, the dwell-time on the areas of interest did not significantly differ between the non-critical and critical situations (coefficient of - 1.667; 95% CI - 4.549 to 1.229; p = 0.27). The professional experience did not significantly influence the visual attention (fixation: rate ratio of 0.88; 95% CI 0.54 to 1.43; p = 0.61 and dwell-time: coefficient of 0.889; 95% CI - 1.465 to 3.229; p = 0.27). Over all situations, anesthesia personnel paid the most attention to the vital signs blood pressure (fixation: mean [SD] of 108 [74.83]; dwell-time: mean [SD] of 27 [15.90] seconds), end-expiratory carbon dioxide (fixation: mean [SD] of 59 [47.39]; dwell-time: mean [SD] of 30 [21.51] seconds), and the electrocardiogram (fixation: mean [SD] of 58 [64.70]; dwell-time: mean [SD] of 15 [14.95] seconds). CONCLUSIONS: Critical anesthesia situations increased anesthesia personnel's visual interaction with the patient monitor. Furthermore, we found that their visual attention focused mainly on a few vital signs. To assist clinicians in critical situations, manufacturers should optimize monitors to convey necessary information as easily and quickly as possible and optimize the visibility of less frequently observed but equally critical vital signs, especially when they are in an abnormal range.


Asunto(s)
Anestesia , Anestesiología , Tecnología de Seguimiento Ocular , Humanos , Monitoreo Fisiológico , Estudios Prospectivos
9.
J Clin Monit Comput ; 34(6): 1369-1378, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31768924

RESUMEN

Patient monitoring requires constant attention and may be particularly vulnerable to distractions, which frequently occur during perioperative work. In this study, we compared anesthesia providers' perceptive performance and perceived workload under distraction for conventional and avatar-based monitoring, a situation awareness-based technology that displays patient status as an animated patient model. In this prospective, multicenter study with a within-subject design, 38 participants evaluated scenarios of 3- and 10-s durations using conventional and avatar-based monitoring, under standardized distraction in the form of a simple calculation task. We quantified perceptual performance as the number of vital signs correctly remembered out of the total of 11 vital signs shown. We quantified perceived workload using the National Aeronautics and Space Administration Task Load Index score. Anesthesia providers remembered more vital signs under distraction using the avatar monitoring technology in the 3-s scenario: 6 (interquartile range [IQR] 5-7) vs. 3 (IQR 2-4), p < 0.001, mean of differences (MoD): 3 (95% confidence interval [95% CI] 1 to 4), and in the 10-s monitoring task: 6 (IQR 5-8) vs. 4 (IQR 2-7), p = 0.028, MoD: 1 (95% CI 0.2 to 3). Participants rated perceived workload lower under distraction with the avatar in the 3-s scenario: 65 (IQR 40-79) vs. 75 (IQR 51-88), p = 0.007, MoD: 9 (95% CI 3 to 15), and in the 10-s scenario: 68 (IQR 50-80) vs. 75 (IQR 65-86), p = 0.019, MoD: 10 (95% CI 2 to 18). Avatar-based monitoring improved anesthesia providers' perceptive performance under distraction and reduced perceived workload. This technology could help to improve caregivers' situation awareness, especially in high-workload situations.


Asunto(s)
Cuidadores , Signos Vitales , Humanos , Monitoreo Fisiológico , Estudios Prospectivos , Carga de Trabajo
10.
J Med Internet Res ; 21(7): e13041, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31317870

RESUMEN

BACKGROUND: Continuous patient monitoring has been described by the World Health Organization as extremely important and is widely used in anesthesia, intensive care medicine, and emergency medicine. However, current state-of-the-art number- and waveform-based monitoring does not ideally support human users in acquiring quick, confident interpretations with low cognitive effort, and there are additional problematic aspects such as alarm fatigue. We developed a visualization technology (Visual Patient), specifically designed to help caregivers gain situation awareness quickly, which presents vital sign information in the form of an animated avatar of the monitored patient. We suspected that because of the way it displays the information as large, colorful, moving graphic objects, caregivers might be able to perform patient monitoring using their peripheral vision, which may facilitate quicker detection of anomalies, independently of acoustic alarms. OBJECTIVE: In this study, we tested the hypothesis that avatar-based monitoring, when observed with peripheral vision only, increases the number of perceptible changes in patient status as well as caregivers' perceived diagnostic confidence compared with a high-fidelity simulation of conventional monitoring, when observed with peripheral vision only. METHODS: We conducted a multicenter comparative study with a within-participant design in which anesthesiologists with their peripheral field of vision looked at 2 patient-monitoring scenarios and tried to identify changes in patient status. To ensure the best possible experimental conditions, we used an eye tracker, which recorded the eye movements of the participants and confirmed that they only looked at the monitoring scenarios with their peripheral vision. RESULTS: Overall, 30 participants evaluated 18 different patient status changes with each technology (avatar and conventional patient monitoring). With conventional patient monitoring, participants could only detect those 3 changes in patient status that are associated with a change in the auditory pulse tone display, that is, tachycardia (faster beeping), bradycardia (slower beeping), and desaturation (lower pitch of beeping). With the avatar, the median number of detected vital sign changes quadrupled from 3 to 12 (P<.001) in scenario 1, and more than doubled from 3 to 8 (P<.001) in scenario 2. Median perceived diagnostic confidence was confident for both scenarios with the avatar and unconfident in scenario 1 (P<.001), and very unconfident in scenario 2 (P=.024) with conventional monitoring. CONCLUSIONS: This study introduces the concept of peripheral vision monitoring. The test performed showed clearly that an avatar-based display is superior to a standard numeric display for peripheral vision. Avatar-based monitoring could potentially make much more of the patient monitoring information available to caregivers for longer time periods per case. Our results indicate that the optimal information transmission would consist of a combination of auditory and avatar-based monitoring.


Asunto(s)
Movimientos Oculares/fisiología , Monitoreo Fisiológico/métodos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
11.
Br J Anaesth ; 116(5): 662-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27106970

RESUMEN

BACKGROUND: Better education of clinicians is expected to enhance patient safety. An important component of education is adherence to standard protocols, which are mainly available in written form. Believing in the potential power of videos, we hypothesized that the introduction of an educational video, based on an institutional standard protocol, would foster adherence to the protocol. METHODS: We conducted a prospective intervention study of 425 anaesthesia procedures and teams (202 pre-video and 223 post-video) involving 1091 team members (516 pre-video and 575 post-video) in seven individual operating areas (with a total of 30 operating rooms) in a university hospital. Failure of adherence to safety-critical tasks during rapid sequence anaesthesia inductions was assessed during systematic on-site observations pre- and post-introduction of an educational video demonstrating evidence-based and best practice guidelines. RESULTS: The odds for failure of adherence to safety-critical tasks between the pre- and post-intervention period were reduced, odds ratio 0.34 (95% confidence interval 0.27-0.42, P<0.001). The risk for failure of adherence was reduced significantly for eight of the 14 safety-critical tasks (all P<0.001). CONCLUSIONS: This study provides empirical evidence for the effectiveness of an educational video to enhance adherence to a standard protocol during complex medical procedures. The introduction of a video can reduce failure of adherence to safety-critical tasks and contribute to patient safety. We recommend the introduction of videos to improve protocol adherence.


Asunto(s)
Anestesia/normas , Anestesiología/educación , Recursos Audiovisuales , Educación Médica Continua/métodos , Grabación en Video , Educación Continua en Enfermería/métodos , Adhesión a Directriz/estadística & datos numéricos , Humanos , Variaciones Dependientes del Observador , Seguridad del Paciente , Enfermería Perioperatoria/educación , Enfermería Perioperatoria/normas , Guías de Práctica Clínica como Asunto , Estudios Prospectivos , Mejoramiento de la Calidad , Suiza , Materiales de Enseñanza
12.
JMIR Res Protoc ; 5(1): e4, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26732090

RESUMEN

BACKGROUND: Tablet computers such as the Apple iPad are progressively replacing traditional paper-and-pencil-based data collection. We combined the iPad with the ready-to-use survey software, iSurvey (from Harvestyourdata), to create a straightforward tool for data collection during the Anesthesia Pre-Induction Checklist (APIC) study, a hospital-wide multimethod intervention study involving observation of team performance and team member surveys in the operating room (OR). OBJECTIVE: We aimed to provide an analysis of the factors that led to the use of the iPad- and iSurvey-based tool for data collection, illustrate our experiences with the use of this data collection tool, and report the results of an expert survey about user experience with this tool. METHODS: We used an iPad- and iSurvey-based tool to observe anesthesia inductions conducted by 205 teams (N=557 team members) in the OR. In Phase 1, expert raters used the iPad- and iSurvey-based tool to rate team performance during anesthesia inductions, and anesthesia team members were asked to indicate their perceptions after the inductions. In Phase 2, we surveyed the expert raters about their perceptions regarding the use of the iPad- and iSurvey-based tool to observe, rate, and survey teams in the ORs. RESULTS: The results of Phase 1 showed that training data collectors on the iPad- and iSurvey-based data collection tool was effortless and there were no serious problems during data collection, upload, download, and export. Interrater agreement of the combined data collection tool was found to be very high for the team observations (median Fleiss' kappa=0.88, 95% CI 0.78-1.00). The results of the follow-up expert rater survey (Phase 2) showed that the raters did not prefer a paper-and-pencil-based data collection method they had used during other earlier studies over the iPad- and iSurvey-based tool (median response 1, IQR 1-1; 1=do not agree, 2=somewhat disagree, 3=neutral, 4=somewhat agree, 5=fully agree). They found the iPad (median 5, IQR 4.5-5) and iSurvey (median 4, IQR 4-5) to be working flawlessly and easy to use (median 5, IQR 4-5). Expert ratings also showed that the anesthesia team members (ie, the surveyed doctors and nurses) who used the iPad- and iSurvey-based tool in the OR liked it (median 4, IQR 3-4.5). CONCLUSIONS: The combination of the iPad and iSurvey provides an efficient and unobtrusive method to observe teams in their natural environment in the OR and to survey team members immediately after completing their task (ie, anesthesia induction). The expert raters positively evaluated the use of the device and user perceptions. Considering these comprehensive results, we can recommend the use of the iPad- and iSurvey-based tool for studying team performance and team member perceptions in the OR.

13.
Anesth Analg ; 121(4): 948-956, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25806399

RESUMEN

BACKGROUND: An anesthesia preinduction checklist (APIC) to be performed before anesthesia induction was introduced and evaluated with respect to 5 team-level outcomes, each being a surrogate end point for patient safety: information exchange (the percentage of checklist items exchanged by a team, out of 12 total items); knowledge of critical information (the percentage of critical information items out of 5 total items such as allergies, reported as known by the members of a team); team members' perceptions of safety (the median scores given by the members of a team on a continuous rating scale); their perception of teamwork (the median scores given by the members of a team on a continuous rating scale); and clinical performance (the percentage of completed items out of 14 required tasks, e.g., suction device checked). METHODS: A prospective interventional study comparing anesthesia teams using the APIC with a control group not using the APIC was performed using a multimethod design. Trained observers rated information exchange and clinical performance during on-site observations of anesthesia inductions. After the observations, each team member indicated the critical information items they knew and their perceptions of safety and teamwork. RESULTS: One hundred five teams using the APIC were compared with 100 teams not doing so. The medians of the team-level outcome scores in the APIC group versus the control group were as follows: information exchange: 100% vs 33% (P < 0.001), knowledge of critical information: 100% vs 90% (P < 0.001), perception of safety: 91% vs 84% (P < 0.001), perception of teamwork: 90% vs 86% (P = 0.028), and clinical performance: 93% vs 93% (P = 0.60). CONCLUSIONS: This study provides empirical evidence that the use of a preinduction checklist significantly improves information exchange, knowledge of critical information, and perception of safety in anesthesia teams-all parameters contributing to patient safety. There was a trend indicating improved perception of teamwork.


Asunto(s)
Anestesia/normas , Lista de Verificación/normas , Conducta Cooperativa , Grupo de Atención al Paciente/normas , Seguridad del Paciente/normas , Percepción , Anestesia/tendencias , Lista de Verificación/tendencias , Femenino , Conocimientos, Actitudes y Práctica en Salud , Humanos , Masculino , Grupo de Atención al Paciente/tendencias , Estudios Prospectivos , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...