Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39296282

RESUMEN

Herein, we investigated the impact of polymorphism vs. dimension control of titania nanocrystals towards hydrogen generation. Two different forms of titania nanoparticles have been synthesized following the solvothermal method, leading to the formation of two distinct physicochemical features. Detailed structural, morphological, and optical studies revealed that the formation of titania nanorods correspond to rutile while granular particles correspond to the anatase phase. Among various titania polymorphs, anatase is well known for its superior photocatalytic activity; however, to our surprise, the as-synthesized rutile nanorods exhibited higher catalytic activity in comparison to anatase spheres, and hydrogen evolution was considerably enhanced after the addition of a minute amount of Pt as the co-catalyst. Thus, despite the higher catalytic activity of anatase, the enhanced hydrogen evolution of rutile nanorods may be related to the creation of a 1D structure. Our study highlights the importance of considering not only TiO2 polymorphism but also shape and dimension in optimizing photocatalytic H2 production.

2.
Nanoscale Adv ; 6(16): 4219-4229, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39114156

RESUMEN

Metal-organic framework derived nanostructures have recently received research attention owing to their inherent porosity, stability, and structural tailorability. This work involves the conversion of zeolitic imidazolate frameworks (ZIFs) into cobalt nitride nanoparticles embedded within a porous carbon matrix (Co4N/C). The as-prepared composite shows great synergy by providing a high surface area and efficient charge transfer, showcasing outstanding electrochemical performance by providing a specific capacitance of 313 F g-1. Moreover, we meticulously conducted calculations to derive the most precise values for the surface contribution, a crucial aspect often overlooked in existing literature, thereby ensuring the reliability of our calculated measurements. Correct calculations of surface and diffusion charge contributions are necessary for evaluating the overall electrochemical performance of supercapacitors. For practical utility, we successfully assembled an asymmetrical supercapacitor employing the Co4N/carbon composite as the negative electrode that achieved an impressive energy density of 26.6 W h kg-1 at a power density of 0.36 kW kg-1. This study opens up new avenues for investigating the use of other metal nitride nanoparticles embedded in carbon structures for various energy storage applications.

4.
RSC Adv ; 14(8): 5472-5478, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38352675

RESUMEN

The current research presents novel sensors based on laccase-like mimetics for the detection of dopamine (DA). The synthesized laccase-like nanozymes (nAuCu, nPtCu, nCuMnCo, and nCoCuCe) were prepared by a simple hydrothermal method and exhibited an attractive catalytic activity toward DA. The developed amperometric sensors based on laccase nanozymes (nAuCu and nPtCu) are more stable, selective, and revealed a higher sensitivity (6.5-fold than the biosensor based on the natural fungal laccase from Trametes zonata). The amperometric sensors were obtained by modification of the glassy carbon electrodes (GCEs) with AuPt nanoparticles. Functionalization of the electrode surface by AuPt NPs resulted in increased catalytic activity of the laccase-like layer and higher sensitivity. Among studied configurations, the sensor containing nAuCu and nAuPt possesses a wide linear range for dopamine detection (10-170 µM), the lowest limit of detection (20 nM), and the highest sensitivity (10 650 ± 8.3 A M-1 m-2) at a low applied potential (+0.2 V versus Ag/AgCl). The proposed simple and cost-effective sensor electrode was used for the determination of DA in pharmaceuticals.

5.
Mikrochim Acta ; 191(1): 47, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38133683

RESUMEN

Amino acid L-arginine (Arg), usually presented in food products and biological liquids, can serve both as a useful indicator of food quality and an important biomarker in medicine. The biosensors based on Arg-selective enzymes are the most promising devices for Arg assay. In this research, three types of amperometric biosensors have been fabricated. They exploit arginine oxidase (ArgO), recombinant arginase I (ARG)/urease, and arginine deiminase (ADI) coupled with the ammonium-chelating redox-active nanoparticles. Cadmium-copper nanoparticles (nCdCu) as the most effective nanochelators were used for the development of ammonium chemosensors and enzyme-coupled Arg biosensors. The fabricated enzyme/nCdCu-containing bioelectrodes show wide linear ranges (up to 200 µM), satisfactory storage stabilities (14 days), and high sensitivities (A⋅M-1⋅m-2) to Arg: 1650, 1700, and 4500 for ADI-, ArgO- and ARG/urease-based sensors, respectively. All biosensors have been exploited to estimate Arg content in commercial juices. The obtained data correlate well with the values obtained by the reference method. A hypothetic scheme for mechanism of action of ammonium nanochelators in electron transfer reaction on the arginine-sensing electrodes has been proposed.


Asunto(s)
Compuestos de Amonio , Técnicas Biosensibles , Ureasa/química , Arginina , Arginasa/metabolismo
6.
Sci Rep ; 13(1): 22741, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123583

RESUMEN

Microbial electrosynthesis (MES) presents a versatile approach for efficiently converting carbon dioxide (CO2) into valuable products. However, poor electron uptake by the microorganisms from the cathode severely limits the performance of MES. In this study, a graphitic carbon nitride (g-C3N4)-metal-organic framework (MOF) i.e. HKUST-1 composite was newly designed and synthesized as the cathode catalyst for MES operations. The physiochemical analysis such as X-ray diffraction, scanning electron microscopy (SEM), and X-ray fluorescence spectroscopy showed the successful synthesis of g-C3N4-HKUST-1, whereas electrochemical assessments revealed its enhanced kinetics for redox reactions. The g-C3N4-HKUST-1 composite displayed excellent biocompatibility to develop electroactive biohybrid catalyst for CO2 reduction. The MES with g-C3N4-HKUST-1 biohybrid demonstrated an excellent current uptake of 1.7 mA/cm2, which was noted higher as compared to the MES using g-C3N4 biohybrid (1.1 mA/cm2). Both the MESs could convert CO2 into acetic and isobutyric acid with a significantly higher yield of 0.46 g/L.d and 0.14 g/L.d respectively in MES with g-C3N4-HKUST-1 biohybrid and 0.27 g/L.d and 0.06 g/L.d, respectively in MES with g-C3N4 biohybrid. The findings of this study suggest that g-C3N4-HKUST-1 is a highly efficient catalytic material for biocathodes in MESs to significantly enhance the CO2 conversion.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Cobre/química , Dióxido de Carbono/química , Bacterias , Electrodos
7.
Sci Rep ; 13(1): 20675, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001163

RESUMEN

In the context of emerging electric devices, the demand for advanced energy storage materials has intensified. These materials must encompass both surface and diffusion-driven charge storage mechanisms. While diffusion-driven reactions offer high capacitance by utilizing the bulk of the material, their effectiveness diminishes at higher discharge rates. Conversely, surface-controlled reactions provide rapid charge/discharge rates and high power density. To strike a balance between these attributes, we devised a tri-composite material, TiO2/Carbon/MoS2 (T10/MoS2). This innovative design features a highly porous carbon core for efficient diffusion and redox-active MoS2 nanosheets on the surface. Leveraging these characteristics, the T10/MoS2 composite exhibited impressive specific capacitance (436 F/g at 5 mV/s), with a significant contribution from the diffusion-controlled process (82%). Furthermore, our symmetrical device achieved a notable energy density of ~ 50 Wh/kg at a power density of 1.3 kW/kg. This concept holds promise for extending the approach to other Metal-Organic Framework (MOF) structures, enabling enhanced diffusion-controlled processes in energy storage applications.

8.
Lab Chip ; 23(17): 3802-3810, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37551427

RESUMEN

Good electronic (Rs = ∼5 Ω sq-1) and optical properties (transmittance: >83%) make indium tin oxide (ITO) an attractive electrode substrate. Despite the commercial availability of high-quality ITO and some low-cost methods for direct deposition being in use by now, the definition of patterns is still a concern. Putting their popularity and extensive use aside, the manufacturing of ITO electrodes so far lacks a rapid, highly reproducible, flexible, cost-effective, easy patterning process that could surpass difficult, time-consuming techniques such as lithography. Herein, we present a low-cost method based on CO2 laser irradiation for preparing ITO microelectrodes and electrode arrays. Electrodes of different sizes and shapes were examined to identify the performance of the proposed methods. Direct ablation of the ITO layer was optimized for rectangular electrodes of 25, 50, and 100 µm in width, while laser cutting of scotch tape stencils and subsequent wet etching were used to create circular electrodes with a diameter of 1.75 mm. A multielectrode array system consisting 8 of these circular electrodes was fabricated on a (25 × 25) mm2 plate, characterized electrochemically through cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM), and as an example application used for monitoring the anchoring behavior of HeLa and HepG2 cell cultures through cell-based electrochemical impedance spectroscopy. Together, the direct ablation method and preparation of laser cut stencils form a complete toolbox, which allows for low-cost and fast fabrication of ITO electrodes for a wide variety of applications. To demonstrate the general availability of the method, we have also prepared a batch of electrodes using a laser plotter in a local printing shop, achieving high intra-workshop reproducibility.

9.
Anal Chem ; 95(30): 11227-11235, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37461137

RESUMEN

Recently, shot noise has been shown to be an inherent part of all charge-transfer processes, leading to a practical limit of quantification of 2100 electrons (≈0.34 fC) [ Curr. Opin. Electrochem. 2020, 22, 170-177]. Attainable limits of quantification are made much larger by greater background currents and insufficient instrumentation, which restricts progress in sensing and single-entity applications. This limitation can be overcome by converting electrochemical charges into photons, which can be detected with much greater sensitivity, even down to a single-photon level. In this work, we demonstrate the use of fluorescence, induced through a closed bipolar setup, to monitor charge-transfer processes below the detection limit of electrochemical workstations. During this process, the oxidation of ferrocenemethanol (FcMeOH) in one cell is used to concurrently drive the oxidation of Amplex Red (AR), a fluorogenic redox molecule, in another cell. The spectroelectrochemistry of AR is investigated and new insights on the commonplace practice of using deprotonated glucose to limit AR photooxidation are presented. The closed bipolar setup is used to produce fluorescence signals corresponding to the steady-state voltammetry of FcMeOH on a microelectrode. Chronopotentiometry is then used to show a linear relationship between the charge passed through FcMeOH oxidation and the integrated AR fluorescence signal. The sensitivity of the measurements obtained at different timescales varies between 2200 and 500 electrons per detected photon. The electrochemical detection limit is approached using a diluted FcMeOH solution in which no faradaic current signal is observed. Nevertheless, a fluorescence signal corresponding to FcMeOH oxidation is still seen, and the detection of charges down to 300 fC is demonstrated.

10.
Adv Colloid Interface Sci ; 318: 102967, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37523999

RESUMEN

Establishing green and reliable energy resources is very important to counteract the carbon footprints and negative impact of non-renewable energy resources. Metal-organic frameworks (MOFs) are a class of porous material finding numerous applications due to their exceptional qualities, such as high surface area, low density, superior structural flexibility, and stability. Recently, increased attention has been paid to surface mounted MOFs (SURMOFs), which is nothing but thin film of MOF, as a new category in nanotechnology having unique properties compared to bulk MOFs. With the advancement of material growth and synthesis technologies, the fine tunability of film thickness, consistency, size, and geometry with a wide range of MOF complexes is possible. In this review, we recapitulate various synthesis approaches of SURMOFs including epitaxial synthesis approach, direct solvothermal method, Langmuir-Blodgett LBL deposition, Inkjet printing technique and others and then correlated the synthesis-structure-property relationship in terms of energy storage and conversion applications. Further the critical assessment and current problems of SURMOFs have been briefly discussed to explore the future opportunities in SURMOFs for energy storage and conversion applications.

11.
J Funct Biomater ; 14(6)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37367279

RESUMEN

Catalytically active nanomaterials, in particular, nanozymes, are promising candidates for applications in biosensors due to their excellent catalytic activity, stability and cost-effective preparation. Nanozymes with peroxidase-like activities are prospective candidates for applications in biosensors. The purpose of the current work is to develop cholesterol oxidase-based amperometric bionanosensors using novel nanocomposites as peroxidase (HRP) mimetics. To select the most electroactive chemosensor on hydrogen peroxide, a wide range of nanomaterials were synthesized and characterized using cyclic voltammetry (CV) and chronoamperometry. Pt NPs were deposited on the surface of a glassy carbon electrode (GCE) in order to improve the conductivity and sensitivity of the nanocomposites. The most HRP-like active bi-metallic CuFe nanoparticles (nCuFe) were placed on a previously nano-platinized electrode, followed by conjugation of cholesterol oxidase (ChOx) in a cross-linking film formed by cysteamine and glutaraldehyde. The constructed nanostructured bioelectrode ChOx/nCuFe/nPt/GCE was characterized by CV and chronoamperometry in the presence of cholesterol. The bionanosensor (ChOx/nCuFe/nPt/GCE) shows a high sensitivity (3960 A·M-1·m-2) for cholesterol, a wide linear range (2-50 µM) and good storage stability at a low working potential (-0.25 V vs. Ag/AgCl/3 M KCl). The constructed bionanosensor was tested on a real serum sample. A detailed comparative analysis of the bioanalytical characteristics of the developed cholesterol bionanosensor and the known analogs is presented.

12.
Sci Rep ; 13(1): 5019, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977815

RESUMEN

Several in-situ electrochemical approaches have been developed for performing a localized photoelectrochemical investigation of the photoanode. One of the techniques is scanning electrochemical microscopy (SECM), which probes local heterogeneous reaction kinetics and fluxes of generated species. In traditional SECM analysis of photocatalysts, evaluation of the influence of radiation on the rate of studied reaction requires an additional dark background experiment. Here, using SECM and an inverted optical microscope, we demonstrate the determination of O2 flux caused by light-driven photoelectrocatalytic water splitting. Photocatalytic signal and dark background are recorded in a single SECM image. We used an indium tin oxide electrode modified with hematite (α-Fe2O3) by electrodeposition as a model sample. The light-driven flux of oxygen is calculated by analysis of SECM image recorded in substrate generation/tip collection mode. In photoelectrochemistry, the qualitative and quantitative knowledge of oxygen evolution will open new doors for understanding the local effects of dopants and hole scavengers in a straightforward and conventional manner.

13.
J Mater Chem B ; 11(8): 1659-1669, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36722440

RESUMEN

Herein we described a post-imprinting modification of the imprinted molecular cavities for electrochemical sensing of a target protein. Imprinted molecular cavities were generated by following the semi-covalent surface imprinting approach. These mesoporous cavities were modified with a ferrocene 'electrochemical' tracer for electrochemical transduction of the target protein recognition. Electrochemical sensors prepared after post-imprinting modification showed a linear response in the concentration range of 0.5 to 50 µM. Chemosensors fabricated based on capacitive impedimetric transduction demonstrated that imprinted molecular cavities without post-imprinting modification showed better selectivity. Scanning electrochemical microscopy (SECM) was used for the surface characterization of imprinted molecular cavities modified with ferrocene electrochemical tracers. SECM analysis performed in the feedback mode monitor changes in the surface state of the ferrocene-modified polymer film. The kinetics of the mediator regeneration was almost 1.8 times higher on the non-imprinted surface versus the post-imprinting modified molecular imprinted polymer.


Asunto(s)
Impresión Molecular , Polímeros , Metalocenos , Polímeros/química , Microscopía Electroquímica de Rastreo , Proteínas
14.
Front Chem ; 10: 1038221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531314

RESUMEN

The rising demand of energy and lack of clean water are two major concerns of modern world. Renewable energy sources are the only way out in order to provide energy in a sustainable manner for the ever-increasing demands of the society. A renewable energy source which can also provide clean water will be of immense interest and that is where Photocatalytic Fuel Cells (PFCs) exactly fit in. PFCs hold the ability to produce electric power with simultaneous photocatalytic degradation of pollutants on exposure to light. Different strategies, including conventional Photoelectrochemical cell design, have been technically upgraded to exploit the advantage of PFCs and to widen their applicability. Parallel to the research on design, researchers have put an immense effort into developing materials/composites for electrodes and their unique properties. The efficient strategies and potential materials have opened up a new horizon of applications for PFCs. Recent research reports reveal this persistently broadening arena which includes hydrogen and hydrogen peroxide generation, carbon dioxide and heavy metal reduction and even sensor applications. The review reported here consolidates all the aspects of various design strategies, materials and applications of PFCs. The review provides an overall understanding of PFC systems, which possess the potential to be a marvellous renewable source of energy with a handful of simultaneous applications. The review is a read to the scientific community and early researchers interested in working on PFC systems.

15.
Mikrochim Acta ; 189(12): 474, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434477

RESUMEN

The aim of the current research is to design alcohol oxidase-based amperometric biosensors (ABSs) using hybrid metallic nanoparticles as artificial peroxidases (PO) or PO-like nanozymes (NZs). A lot of metallic PO-like NZs were synthesized and tested with respect to their ability to substitute natural PO in solution and on amperometric electrode. The most effective PO mimetics were coupled with alcohol oxidase (AOX) on graphite electrodes (GEs) and characterized. Two types of modified GEs, namely, the AOX/nAuCePt/GE and the AOX/nFePtAu/GE show the highest sensitivities to ethanol (2600 A⋅M-1⋅m-2 and 1250 A⋅M-1⋅m-2, respectively), low limits of detection (1.5 µM and 2.2 µM), broad linear ranges (5 - 100 µM and 12 - 120 µM), as well as satisfactory storage stabilities. The most sensitive bioelectrode AOX/nAuCePt/GE was used as ABS for ethanol determination in real samples. The practical feasibility of the constructed ABS was demonstrated by determination of ethanol in beverages, human blood and saliva.


Asunto(s)
Técnicas Biosensibles , Grafito , Humanos , Peroxidasa , Etanol , Oxidorreductasas de Alcohol , Técnicas Biosensibles/métodos , Oxidorreductasas
16.
Angew Chem Int Ed Engl ; 61(34): e202205298, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35644915

RESUMEN

Living systems that can spontaneously exhibit directional motion belong to diverse classes such as bacteria, sperm and plankton. They have fascinated scientists in recent years to design completely artificial or biohybrid mobile objects. Natural ingredients, like parts of plants, have been used to elaborate miniaturized dynamic objects, which can move when they are combined with other, non-natural, building blocks. Herein, we report that the precise structural tailoring of natural plant leaves allows generating a spatially predefined and confined release of oxygen gas, due to the conversion of carbon dioxide. This constitutes the driving force for generating motion, which is solely due to the respiration of leaves by photosynthesis. The rate of gas evolution can be fine-tuned by changing the light intensity and the leaf size, allowing ultimately to control the motility of objects with dimensions ranging from the millimeter to the micrometer scale.


Asunto(s)
Dióxido de Carbono , Semillas , Luz , Fotosíntesis , Hojas de la Planta
17.
Org Chem Front ; 8(17): 4730-4745, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34484800

RESUMEN

π-Conjugated macrocycles are molecules with unique properties that are increasingly exploited for applications and the question of whether they can sustain global aromatic or antiaromatic ring currents is particularly intriguing. However, there are only a small number of experimental studies that investigate how the properties of π-conjugated macrocycles evolve with systematic structural changes. Here, we present such a systematic experimental study of a set of [2.2.2.2]cyclophanetetraenes, all with formally Hückel antiaromatic ground states, and combine it with an in-depth computational analysis. The study reveals the central role of local and global aromaticity for rationalizing the observed optoelectronic properties, ranging from extremely large Stokes shifts of up to 1.6 eV to reversible fourfold reduction, a highly useful feature for charge storage/accumulation applications. A recently developed method for the visualization of chemical shielding tensors (VIST) is applied to provide unique insight into local and global ring currents occurring in different planes along the macrocycle. Conformational changes as a result of the structural variations can further explain some of the observations. The study contributes to the development of structure-property relationships and molecular design guidelines and will help to understand, rationalize, and predict the properties of other π-conjugated macrocycles. It will also assist in the design of macrocycle-based supramolecular elements with defined properties.

18.
Chemphyschem ; 22(13): 1352-1360, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-33909320

RESUMEN

H2 O2 is a versatile chemical and can be generated by the oxygen reduction reaction (ORR) in proton donor solution in molecular solvents or room temperature ionic liquids (IL). We investigated this reaction at interfaces formed by eleven hydrophobic ILs and acidic aqueous solution as a proton source with decamethylferrocene (DMFc) as an electron donor. H2 O2 is generated in colorimetrically detectable amounts in biphasic systems formed by alkyl imidazolium hexafluorophosphate or tetraalkylammonium bis(trifluoromethylsulfonyl)imide ionic liquids. H2 O2 fluxes were estimated close to liquid|liquid interface by scanning electrochemical microscopy (SECM). Contrary to the interfaces formed by hydrophobic electrolyte solution in a molecular solvent, H2 O2 generation is followed by cation expulsion to the aqueous phase. Weak correlation between the H2 O2 flux and the difference between DMFc/DMFc+ redox potential and 2 electron ORR standard potential indicates kinetic control of the reaction.

19.
Angew Chem Int Ed Engl ; 59(31): 12958-12964, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32368821

RESUMEN

Aromatic organic compounds can be used as electrode materials in rechargeable batteries and are expected to advance the development of both anode and cathode materials for sodium-ion batteries (SIBs). However, most aromatic organic compounds assessed as anode materials in SIBs to date exhibit significant degradation issues under fast-charge/discharge conditions and unsatisfying long-term cycling performance. Now, a molecular design concept is presented for improving the stability of organic compounds for battery electrodes. The molecular design of the investigated compound, [2.2.2.2]paracyclophane-1,9,17,25-tetraene (PCT), can stabilize the neutral state by local aromaticity and the doubly reduced state by global aromaticity, resulting in an anode material with extraordinarily stable cycling performance and outstanding performance under fast-charge/discharge conditions, demonstrating an exciting new path for the development of electrode materials for SIBs and other types of batteries.

20.
Sci Rep ; 9(1): 8575, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31189961

RESUMEN

Evolution of bacteria to selective chemical pressure (e.g. antibiotics) is well studied in contrast to the influence of physical stressors. Here we show that instantaneous physical stress in a homogeneous environment (without concentration gradient) induces fast adaptation of Escherichia coli. We exposed E. coli to a large number of collisions of around 105 per bacterium per second with sharp ZnO nanorods. The pressure exerted on the bacterial cell wall was up to 10 GPa and induced phenotype changes. The bacteria's shape became more spherical, the density of their periplasm increased by around 15% and the average thickness of the cell wall by 30%. Such E. coli cells appeared almost as Gram-positive bacteria in the standard Gram staining. Additionally, we observed a combination of changes occurring at the genomic level (mutations identified in form of single nucleotide polymorphisms) and down-regulation of expression of 61 genes encoding proteins involved in ß-oxidation of fatty acids, glycolysis, the citric acid cycle, as well as uptake of amino acids and enzyme cofactors. Thus, we show that bacteria undergo phenotypic changes upon instantaneous, acute physical stress without any obviously available time for gradual adaptation.


Asunto(s)
Escherichia coli , Mutación , Nanotubos/química , Polimorfismo de Nucleótido Simple , Estrés Fisiológico/efectos de los fármacos , Óxido de Zinc , Escherichia coli/citología , Escherichia coli/genética , Escherichia coli/metabolismo , Óxido de Zinc/química , Óxido de Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA