Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Sci Total Environ ; : 174630, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39009140

RESUMEN

Latin American (LatAm) cities are grappling with elevated levels of gaseous and particulate pollutants, which are having detrimental effects on both the local ecosystem and human health. Of particular concern are aerosols with smaller diameters (lower or equal to 2.5 µm, PM2.5), known for their ability to penetrate deep into the respiratory system. While measurements in the region are increasing, they remain limited. This study addresses this gap by presenting the results of a comprehensive, year-long PM2.5 monitoring campaign conducted in six LatAm cities: Buenos Aires, São Paulo, Medellín, San José, Quito and Ciudad de México. Despite all six monitoring sites being urban, they exhibited significant variations in PM2.5 levels, as well as in the content and seasonal behavior of elemental carbon (EC) and organic carbon (OC). Estimations of secondary organic carbon (SOC) using the EC-tracer method revealed a notable SOC relevance across all cities: secondary organic aerosols (SOA) accounted in average for between 19 % to 48 % of the total carbonaceous matter. Source attribution, conducted through the Positive Matrix Factorization (PMF) model, highlights substantial contributions from gasoline and diesel traffic emissions (29 % to 49 % of total carbon, TC), regional biomass burning (21 % to 27 %), and SOA (20 % to 38 %) in all cities, with similar chemical signatures. Additionally, industrial emissions were significant in two cities (Medellín and San José), while two others experienced minor impacts from construction machinery at nearby sites (Buenos Aires and Quito). This comparative analysis underscores the importance of considering not only the thermal optical EC/OC fractions as tracers of sources but also the OC/EC ratio of the PMF factors. This dual approach not only adds depth to the research but also suggests varied methodologies for addressing this crucial environmental concern. This study lays the groundwork for future investigations into the factors influencing the content and seasonality of SOA in the region.

2.
BMC Plant Biol ; 24(1): 268, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605320

RESUMEN

BACKGROUND: Considering the challenges posed by nitrogen (N) pollution and its impact on food security and sustainability, it is crucial to develop management techniques that optimize N fertilization in croplands. Our research intended to explore the potential benefits of co-inoculation with Azospirillum brasilense and Bacillus subtilis combined with N application rates on corn plants. The study focused on evaluating corn photosynthesis-related parameters, oxidative stress assay, and physiological nutrient use parameters. Focus was placed on the eventual improved capacity of plants to recover N from applied fertilizers (AFR) and enhance N use efficiency (NUE) during photosynthesis. The two-year field trial involved four seed inoculation treatments (control, A. brasilense, B. subtilis, and A. brasilense + B. subtilis) and five N application rates (0 to 240 kg N ha-1, applied as side-dress). RESULTS: Our results suggested that the combined effects of microbial consortia and adequate N-application rates played a crucial role in N-recovery; enhanced NUE; increased N accumulation, leaf chlorophyll index (LCI), and shoot and root growth; consequently improving corn grain yield. The integration of inoculation and adequate N rates upregulated CO2 uptake and assimilation, transpiration, and water use efficiency, while downregulated oxidative stress. CONCLUSIONS: The results indicated that the optimum N application rate could be reduced from 240 to 175 kg N ha-1 while increasing corn yield by 5.2%. Furthermore, our findings suggest that replacing 240 by 175 kg N ha-1 of N fertilizer (-65 kg N ha-1) with microbial consortia would reduce CO2 emission by 682.5 kg CO2 -e ha-1. Excessive N application, mainly with the presence of beneficial bacteria, can disrupt N-balance in the plant, alter soil and bacteria levels, and ultimately affect plant growth and yield. Hence, highlighting the importance of adequate N management to maximize the benefits of inoculation in agriculture and to counteract N loss from agricultural systems intensification.


Asunto(s)
Fertilizantes , Zea mays , Nitrógeno/análisis , Dióxido de Carbono , Agricultura , Suelo
3.
Int J Environ Health Res ; 34(4): 1926-1943, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36745741

RESUMEN

Air pollution is a critical public health concern. The present study assessed the risk to human health of airborne Potentially Toxic Elements (PTE) arsenic, nickel and lead exposure in particulate matter (PM10-2.5) in Sao Paulo, Brazil. Statistical analysis was performed using R Software and the risk assessment for human health was carried out according to the methods of the United States Environmental Protection Agency. The results for mean annual concentration of PTE (ng m-3) were within the limits stipulated for air-quality by international agencies (arsenic <6, nickel <20 and lead <150). Airborne arsenic and lead showed higher mean concentrations during the winter than the other seasons (p < 0.05). However, the results showed a greater health risk for the adult population and during the winter season. These findings highlight the importance of air pollution as a risk factor for population health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Arsénico , Humanos , Adulto , Material Particulado/toxicidad , Material Particulado/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Arsénico/toxicidad , Arsénico/análisis , Níquel/toxicidad , Níquel/análisis , Brasil , Plomo/toxicidad , Plomo/análisis , Contaminación del Aire/análisis , Estaciones del Año , Monitoreo del Ambiente
4.
Front Plant Sci ; 14: 1281670, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929176

RESUMEN

Introduction and aims: In the context of increasing population and decreasing soil fertility, food security is one of humanity's greatest challenges. Large amounts of waste, such as sewage sludge, are produced annually, with their final disposal causing environmental pollution and hazards to human health. Sludge has high amounts of nitrogen (N), and, when safely recycled by applying it into the soil as composted sewage sludge (CSS), its residual effect may provide gradual N release to crops. A field study was conducted in the Brazilian Cerrado. The aims were to investigate the residual effect of successive applications of CSS as a source of N in the common bean (Phaseolus vulgaris L. cv. BRS Estilo)-palisade grass (Urochloa brizantha (A.Rich.) R.D. Webster)-soybean (Glycine max L.) rotation under no-tillage. Additionally, N cycling was monitored through changes in N metabolism; the efficiency of biological N2 fixation (BNF) and its implications for plant nutrition, development, and productivity, was also assessed. Methods: The experiment consisted of a randomized complete block design comparing four CSS rates (10, 15, 20, and 25 Mg ha-1, wet basis) to a control treatment (without adding mineral or organic fertilizer) over two crop years. Multiple plant and soil analyses (plant development and crop yield, Falker chlorophyll index (FCI), enzymatic, biochemical, 15N natural abundance, was evaluated, root and shoot N accumulation, etc.) were evaluated. Results and discussion: Results showed that CSS: i) maintained adequate N levels for all crops, increasing their productivity; ii) promoted efficient BNF, due to the stability of ureide metabolism in plants and increased protein content; iii) increased the nitrate content and the nitrate reductase activity in soybean; iv) affected urease activity and ammonium content due to changes in the plant's urea metabolism; v) increased N accumulation in the aerial part of palisade grass. Composted sewage sludge can be used as an alternative source to meet crops' N requirements, promoting productivity gains and N cycling through forage and improving N metabolism.

5.
Plants (Basel) ; 12(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37514313

RESUMEN

Phosphate fertilization in highly weathered soils has been a major challenge for sugarcane production. The objective of this work was to evaluate the foliar levels of phosphorus (P) and nitrogen (N) and the technological quality and productivity of second ratoon cane as a function of inoculation with plant-growth-promoting bacteria (PGPBs) together with the residual effect of phosphate fertilization. The experiment was carried out at the research and extension farm of Ilha Solteira, state of São Paulo, Brazil. The experiment was designed in a randomized block with three replications in a 5 × 8 factorial scheme. The treatments consisted of five residual doses of phosphorus (0, 45, 90, 135 and 180 kg ha-1 of P2O5, 46% P) applied at planting from the source of triple superphosphate and eight inoculations from three species of PGPB (Azospirillum brasilense, Bacillus subtilis and Pseudomonas fluorescens), applied in single or co-inoculation at the base of stems of sugarcane variety RB92579. Inoculation with PGPBs influenced leaf N concentration, while inoculations with Pseudomonas fluorescens and combinations of bacteria together with the highest doses exerted a positive effect on leaf P concentration. Co-inoculation with A. brasilense + Pseudomonas fluorescens associated with a residual dose of 135 kg ha-1 of P2O5 increased stem productivity by 42%. Thus, it was concluded that inoculations with Pseudomonas fluorescens and their combinations are beneficial for the sugarcane crop, reducing phosphate fertilization and increasing productivity.

6.
Plants (Basel) ; 12(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299132

RESUMEN

Composted sewage sludge (CSS) is an organic fertilizer that can be used as a source of micronutrients in agriculture. However, there are few studies with CSS to supply micronutrients for the bean crop. We aimed to evaluate micronutrient concentrations in the soil and their effects on nutrition, extraction, export, and grain yield in response to CSS residual application. The experiment was carried out in the field at Selvíria-MS, Brazil. The common bean cv. BRS Estilo was cultivated in two agricultural years (2017/18 and 2018/19). The experiment was designed in randomized blocks with four replications. Six different treatments were compared: (i) four increasing CSS rates, i.e., CSS5.0 (5.0 t ha-1 of applied CSS, wet basis), CSS7.5, CSS10.0, CSS12.5; (ii) a conventional mineral fertilizer (CF); (iii) a control (CT) without CSS and CF application. The available levels of B, Cu, Fe, Mn, and Zn were evaluated in soil samples collected in the 0-0.2 and 0.2-0.4 m soil surface horizons. The concentration, extraction, and export of micronutrients in the leaf and productivity of common beans were evaluated. The concentration of Cu, Fe, and Mn ranged from medium to high in soil. The available levels of B and Zn in the soil increased with the residual rates of CSS, which were statistically not different from the treatments with CF. The nutritional status of the common bean remained adequate. The common bean showed a higher requirement for micronutrients in the second year. The leaf concentration of B and Zn increased in the CSS7.5 and CSS10.0 treatments. There was a greater extraction of micronutrients in the second year. Productivity was not influenced by the treatments; however, it was higher than the Brazilian national average. Micronutrients exported to grains varied between growing years but were not influenced by treatments. We conclude that CSS can be used as an alternative source of micronutrients for common beans grown in winter.

7.
Environ Pollut ; 331(Pt 2): 121826, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37196840

RESUMEN

The Metropolitan Area of São Paulo (MASP) is among the largest urban areas in the Southern Hemisphere. Vehicular emissions are of great concern in metropolitan areas and MASP is unique due to the use of biofuels on a large scale (sugarcane ethanol and biodiesel). In this work, tunnel measurements were employed to assess vehicle emissions and to calculate emission factors (EFs) for heavy-duty and light-duty vehicles (HDVs and LDVs). The EFs were determined for particulate matter (PM) and its chemical compounds. The EFs obtained for 2018 were compared with previous tunnel experiments performed in the same area. An overall trend of reduction of fine and coarse PM, organic carbon (OC), and elemental carbon (EC) EFs for both LDVs and HDVs was observed if compared to those observed in past years, suggesting the effectiveness of vehicular emissions control policies implemented in Brazil. A predominance of Fe, Cu, Al, and Ba emissions was observed for the LDV fleet in the fine fraction. Cu presented higher emissions than two decades ago, which was associated with the increased use of ethanol fuel in the region. For HDVs, Zn and Pb were mostly emitted in the fine mode and were linked with lubricating oil emissions from diesel vehicles. A predominance in the emission of three- and four-ring polycyclic aromatic hydrocarbons (PAHs) for HDVs and five-ring PAHs for LDVs agreed with what was observed in previous studies. The use of biofuels may explain the lower PAH emissions for LDVs (including carcinogenic benzo[a]pyrene) compared to those observed in other countries. The tendency observed was that LDVs emitted higher amounts of carcinogenic species. The use of these real EFs in air quality modeling resulted in more accurate simulations of PM concentrations, showing the importance of updating data with real-world measurements.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , Biocombustibles , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Monitoreo del Ambiente/métodos , Brasil , Material Particulado/análisis , Carbono/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Etanol
8.
Sci Total Environ ; 888: 163439, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37196956

RESUMEN

Recently, extreme wildfires have damaged important ecosystems worldwide and have affected urban areas miles away due to long-range transport of smoke plumes. We performed a comprehensive analysis to clarify how smoke plumes from Pantanal and Amazon forests wildfires and sugarcane harvest burning also from interior of the state of São Paulo (ISSP) were transported and injected into the atmosphere of the Metropolitan Area of São Paulo (MASP), where they worsened air quality and increased greenhouse gas (GHG) levels. To classify event days, multiple biomass burning fingerprints as carbon isotopes, Lidar ratio and specific compounds ratios were combined with back trajectories modeling. During smoke plume event days in the MASP fine particulate matter concentrations exceeded the WHO standard (>25 µg m-3), at 99 % of the air quality monitoring stations, and peak CO2 excess were 100 % to 1178 % higher than non-event days. We demonstrated how external pollution events such as wildfires pose an additional challenge for cities, regarding public health threats associated to air quality, and reinforces the importance of GHG monitoring networks to track local and remote GHG emissions and sources in urban areas.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Incendios , Saccharum , Incendios Forestales , Contaminantes Atmosféricos/análisis , Brasil , Ecosistema , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/análisis , Contaminación del Aire/análisis , Material Particulado/análisis , Humo/análisis , Bosques , Monitoreo del Ambiente
9.
Artículo en Inglés | MEDLINE | ID: mdl-37174225

RESUMEN

We applied the AirQ+ model to analyze the 2021 data within our study period (15 December 2020 to 17 June 2022) to quantitatively estimate the number of specific health outcomes from long- and short-term exposure to atmospheric pollutants that could be avoided by adopting the new World Health Organization Air Quality Guidelines (WHO AQGs) in São Paulo, Southeastern Brazil. Based on temporal variations, PM2.5, PM10, NO2, and O3 exceeded the 2021 WHO AQGs on up to 54.4% of the days during sampling, mainly in wintertime (June to September 2021). Reducing PM2.5 values in São Paulo, as recommended by the WHO, could prevent 113 and 24 deaths from lung cancer (LC) and chronic obstructive pulmonary disease (COPD) annually, respectively. Moreover, it could avoid 258 and 163 hospitalizations caused by respiratory (RD) and cardiovascular diseases (CVD) due to PM2.5 exposure. The results for excess deaths by RD and CVD due to O3 were 443 and 228, respectively, and 90 RD hospitalizations due to NO2. Therefore, AirQ+ is a useful tool that enables further elaboration and implementation of air pollution control strategies to reduce and prevent hospital admissions, mortality, and economic costs due to exposure to PM2.5, O3, and NO2 in São Paulo.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Cardiovasculares , Humanos , Contaminantes Atmosféricos/análisis , Brasil/epidemiología , Dióxido de Nitrógeno , Material Particulado/análisis , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/análisis , Enfermedades Cardiovasculares/epidemiología , Medición de Riesgo
10.
Plants (Basel) ; 12(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36904024

RESUMEN

Biological nitrogen fixation in soybean is enhanced when seed is treated with cobalt (Co) and molybdenum (Mo) prior to planting. In this study, our objective was to verify if Co and Mo application during the reproductive phase of the crop increases seed Co and Mo concentration without adverse effects on seed quality. Two experiments were conducted. First, we investigated foliar and soil Co and Mo application under greenhouse conditions. Next, we validated the results obtained in the first study. The treatments for both experiments consisted of Co doses combined with Mo, and a control without Co and Mo application. The foliar application was more efficient in producing enriched Co and Mo seed; meanwhile, as Co doses increased so did Co and Mo concentrations in the seed. There were no adverse effects on nutrition, development, quality, and yield of parent plants and seed when these micronutrients were applied. The seed showed higher germination, vigor, and uniformity for the development of soybean seedlings. We concluded that the application of 20 g ha-1 Co and 800 g ha-1 Mo via foliar application at the reproductive stage of soybean increased germination rate and achieved the best growth and vigor index of enriched seed.

11.
Sci Total Environ ; 856(Pt 2): 159006, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36162571

RESUMEN

This study characterized the chemical composition of particulate matter (PM) from light- (LDV) and heavy-duty (HDV) vehicles based on two traffic tunnel samplings carried out in the megacity of São Paulo (Brazil), which has >7 million vehicles and intense biofuel use. The samples were collected with high-volume samplers and analyzed using chemical characterization techniques (ion and gas chromatography, thermal-optical analysis, and inductively coupled plasma mass spectroscopy). Chemical source profiles (%) were calculated based on the measurements performed inside and outside the tunnels. Identifying a high abundance of Fe and Cu for traffic-related PM in the LDV-impacted tunnel was possible, linked with the emission of vehicles powered by ethanol and gasohol (gasoline and ethanol blend). We calculated diagnostic ratios (e.g., EC/Cu, Fe/Cu, pyrene/benzo[a]pyrene, pyrene/benzo[b]fluoranthene, and fluoranthene/benzo[b]fluoranthene) characteristic of fuel exhausts (diesel/biodiesel and ethanol/gasohol), allowing their use in the assessment of the temporal variation of the fuel type used in urban sites. Element diagnostic ratios (Cu/Sb and Fe/Cu) pointed to the predominance of LDVs exhaust-related copper and can differentiate LDVs exhaust from brake wear emissions. The carbonaceous fraction EC3 was suggested as an HDV emission tracer. A higher total polycyclic aromatic hydrocarbons (PAHs) fraction of traffic-related PM2.5 was observed in the HDV-impacted tunnel, with a predominance of diesel-related pyrene and fluoranthene, as well as higher oxy-PAHs (e.g., 9,10-anthraquinone, associated with biodiesel blends) abundances. However, carcinogenic species presented higher abundances for the LDV-impacted tunnel (e.g., benzo[a]pyrene). These findings highlighted the impact of biofuels on the characteristic ratios of chemical species and pointed to possible markers for LDVs and HDVs exhausts.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Material Particulado/análisis , Biocombustibles/análisis , Contaminantes Atmosféricos/análisis , Benzo(a)pireno/análisis , Monitoreo del Ambiente/métodos , Brasil , Emisiones de Vehículos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Etanol/análisis
12.
Plants (Basel) ; 11(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36432883

RESUMEN

A successful microbial inoculant can increase root colonization and establish a positive interaction with native microorganisms to promote growth and productivity of cereal crops. Zinc (Zn) is an intensively reported deficient nutrient for maize and wheat production in Brazilian Cerrado. It can be sustainably managed by inoculation with plant growth-promoting bacteria and their symbiotic association with other microorganisms such as arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE). The objective of this study was to evaluate the effect of Azospirillum brasilense inoculation and residual Zn rates on root colonization and grain yield of maize and wheat in succession under the tropical conditions of Brazil. These experiments were conducted in a randomized block design with four replications and arranged in a 5 × 2 factorial scheme. The treatments consisted of five Zn rates (0, 2, 4, 6 and 8 kg ha-1) applied from zinc sulfate in maize and residual on wheat and without and with seed inoculation of A. brasilense. The results indicated that root colonization by AMF and DSE in maize-wheat cropping system were significantly increased with interaction of Zn rates and inoculation treatments. Inoculation with A. brasilense at residual Zn rates of 4 kg ha-1 increased root colonization by AMF under maize cultivation. Similarly, inoculation with A. brasilense at residual Zn rates of 2 and 4 kg ha-1 reduced root colonization by DSE under wheat in succession. The leaf chlorophyll index and leaf Zn concentration were increased with inoculation of the A. brasilense and residual Zn rates. The inoculation did not influence AMF spore production and CO2-C in both crops. The grain yield and yield components of maize-wheat were increased with the inoculation of A. brasilense under residual Zn rates of 3 to 4 kg ha-1 in tropical savannah conditions. Inoculation with A. brasilense under residual Zn rates up to 4 kg ha-1 promoted root colonization by AMF and DSE in the maize cropping season. While the inoculation with A. brasilense under 2 and 4 kg ha-1 residual Zn rates reduced root colonization by AMF and DSE in the wheat cropping season. Therefore, inoculation with A. brasilense in combination with Zn fertilization could consider a sustainable approach to increase the yield and performance of the maize-wheat cropping system in the tropical savannah conditions of Brazil.

13.
Plants (Basel) ; 11(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35567126

RESUMEN

Biofortification of cereal crops with zinc and diazotrophic bacteria is a sustainable solution to nutrient deficiency and hidden hunger. The inoculation of staple grain crops such as maize is increased with reducing productivity losses while improving nutrition and use efficiency under climatic extremes and weathered soils of tropical savannah. Therefore, objectives of our study were to evaluate the influence of seed inoculation with diazotrophic bacteria (No inoculation-Control, Azospirillum brasilense, Bacillus subtilis, and Pseudomonas fluorescens) together with residual effect of soil Zn (absence and presence) on growth, yield, Zn nutrition, Zn use efficiencies, and intake of maize in 2019 and 2020 cropping seasons. The inoculation of B. subtilis increased hundred grain mass and yield (14.5 and 17%), while P. fluorescens under residual Zn fertilization has improved shoot and grain Zn concentration in shoot (29.5 and 30.5%). and grain (25.5 and 26.2%), while improving Zn accumulation in shoot (33.8 and 35%) and grain (37.2 and 42%) of maize. The estimated Zn intake in maize was also increased with A. brasilense inoculation and residual Zn application. The Zn use efficiencies including Zn use efficiency, agro-physiological, and utilization efficiency was increased with B. subtilis, while applied Zn recovery was increased with A. brasilense inoculations under residual Zn fertilization. Zinc use efficiency was increased by 93.3 and 397% with inoculation of B. subtilis regardless of Zn application. Therefore, inoculation with B. subtilis and P. fluorescens along residual Zn fertilization is considered the most effective and sustainable strategy for agronomic biofortification of maize under harsh tropical conditions of Brazil.

14.
Environ Int ; 162: 107155, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35278800

RESUMEN

Poor ventilation and polluting cooking fuels in low-income homes cause high exposure, yet relevant global studies are limited. We assessed exposure to in-kitchen particulate matter (PM2.5 and PM10) employing similar instrumentation in 60 low-income homes across 12 cities: Dhaka (Bangladesh); Chennai (India); Nanjing (China); Medellín (Colombia); São Paulo (Brazil); Cairo (Egypt); Sulaymaniyah (Iraq); Addis Ababa (Ethiopia); Akure (Nigeria); Blantyre (Malawi); Dar-es-Salaam (Tanzania) and Nairobi (Kenya). Exposure profiles of kitchen occupants showed that fuel, kitchen volume, cooking type and ventilation were the most prominent factors affecting in-kitchen exposure. Different cuisines resulted in varying cooking durations and disproportional exposures. Occupants in Dhaka, Nanjing, Dar-es-Salaam and Nairobi spent > 40% of their cooking time frying (the highest particle emitting cooking activity) compared with âˆ¼ 68% of time spent boiling/stewing in Cairo, Sulaymaniyah and Akure. The highest average PM2.5 (PM10) concentrations were in Dhaka 185 ± 48 (220 ± 58) µg m-3 owing to small kitchen volume, extensive frying and prolonged cooking compared with the lowest in Medellín 10 ± 3 (14 ± 2) µg m-3. Dual ventilation (mechanical and natural) in Chennai, Cairo and Sulaymaniyah reduced average in-kitchen PM2.5 and PM10 by 2.3- and 1.8-times compared with natural ventilation (open doors) in Addis Ababa, Dar-es-Salam and Nairobi. Using charcoal during cooking (Addis Ababa, Blantyre and Nairobi) increased PM2.5 levels by 1.3- and 3.1-times compared with using natural gas (Nanjing, Medellin and Cairo) and LPG (Chennai, Sao Paulo and Sulaymaniyah), respectively. Smaller-volume kitchens (<15 m3; Dhaka and Nanjing) increased cooking exposure compared with their larger-volume counterparts (Medellin, Cairo and Sulaymaniyah). Potential exposure doses were highest for Asian, followed by African, Middle-eastern and South American homes. We recommend increased cooking exhaust extraction, cleaner fuels, awareness on improved cooking practices and minimising passive occupancy in kitchens to mitigate harmful cooking emissions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Aerosoles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Bangladesh , Brasil , Ciudades , Culinaria , Monitoreo del Ambiente/métodos , Etiopía , India , Kenia , Material Particulado/análisis
15.
Sci Total Environ ; 824: 153728, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35157860

RESUMEN

Biosphere-atmosphere interactions play a key role in urban chemistry because of biogenic volatile organic compound (BVOC) emissions. Of the BVOC, isoprene is the most emitted compound; however, it also has anthropogenic origins in urban areas. In this study, we aimed to investigate the spatio-temporal variability and atmospheric impacts of biogenic and anthropogenic isoprene in the subtropical megacity of São Paulo (MASP), Brazil. Several measurement campaigns were conducted in three different urban Atlantic forests (Matão, PEFI, and RMG), and an urban background site (IAG); this equated to a total of 268 samples for the 2018-2019 period. For all sampling points, daytime average concentrations of isoprene were two to three times higher during the rainy season (IAG: 1.75 ± 0.93 ppb; Matão: 0.87 ± 0.35 ppb; PEFI: 0.50 ± 0.30 ppb; RMG: 0.37 ± 0.18 ppb), than those observed during the dry season (IAG: 0.46 ± 0.24 ppb; Matão: 0.31 ± 0.17 ppb; PEFI: 0.17 ± 0.11 ppb; RMG: 0.11 ± 0.07 ppb). Average isoprene concentrations were similar to those observed in other places worldwide, with the exception of the Amazon forest. Our results indicate differences in isoprene concentrations between sites, suggesting that environmental conditions such as the urban heat island and vegetation types, may play a role in spatial variability. Estimates of the isoprene fraction indicated that the biogenic fraction (85%) surpassed the anthropogenic fraction during the rainy season. By contrast, the anthropogenic fraction (52%) exceeded the biogenic fraction during dry periods. These fractions have an impact on potentially forming secondary pollutants gaseous (ozone formation potential: 7.19-33.32 µg m-3), and aerosols (secondary organic aerosols formation potential: 0.41-1.88 µg m-3). These results highlight the role of biogenic isoprene and its potential impact on urban air quality in subtropical megacities; this requires further investigation under future climate change scenarios.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Compuestos Orgánicos Volátiles , Aerosoles , Contaminantes Atmosféricos/análisis , Brasil , Butadienos , Ciudades , Bosques , Hemiterpenos , Calor , Compuestos Orgánicos Volátiles/análisis
16.
Retin Cases Brief Rep ; 16(3): 289-292, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31985711

RESUMEN

PURPOSE: To describe a case of stellate nonhereditary idiopathic foveomacular retinoschisis associated with outer retinal layer defect treated with pars plana vitrectomy, internal limiting membrane removal, and C3F8 tamponade. METHODS: Spectral-domain optical coherence tomography (Heidelberg Engineering, Heidelberg, Germany) scans of a 46-year-old woman with unilateral stellate nonhereditary idiopathic foveomacular retinoschisis were acquired at baseline and 1, 3, 6, and 12 months after surgery. RESULTS: Pars plana vitrectomy was performed after phacoemulsification. The vitreous was circumcised, and the internal limiting membrane was removed with a Tano brush, releasing tangential forces. The patient experienced progressive recovery of the outer retinal layers and improvement of visual acuity during follow-up. CONCLUSION: Stellate nonhereditary idiopathic foveomacular retinoschisis may be associated with outer retinal layer defect and severe vision loss. Pars plana vitrectomy with internal limiting membrane removal and C3F8 infusion seems to be a safe and feasible treatment in such cases, with potentially good anatomical and functional outcome.


Asunto(s)
Retinosquisis , Femenino , Humanos , Persona de Mediana Edad , Retina , Retinosquisis/complicaciones , Retinosquisis/diagnóstico , Retinosquisis/cirugía , Estudios Retrospectivos , Tomografía de Coherencia Óptica/métodos , Agudeza Visual , Vitrectomía
17.
Environ Monit Assess ; 194(1): 20, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34890002

RESUMEN

With its accumulation in upland rice, cadmium (Cd) can easily enter the human food chain, which poses a global health threat considering nearly half of the human population depends on rice as a staple food source. A study was conducted to (1) evaluate Cd accumulation by rice cultivars, grown in Cd-polluted Tropical Oxisols, with different levels of Cd tolerance; (2) quantify Cd transfer from soil to rice shoots and grain; and (3) estimate daily Cd intake by humans. Three rice cultivars, characterized by low (Cateto Seda-CS), medium (BRSMG Talento-BT), and high (BRSMG Caravera-BC) Cd uptake capacity, were investigated. Rice cultivars were exposed to increasing soil Cd concentrations (0.0, 0.7, 1.3, 3.9, 7.8, and 11.7 mg kg-1). Analysis was performed on soil, shoots, and grain. Shoot biomass and grain yield decreased with increasing Cd supply, suggesting the following Cd tolerance: CS > BT > BC. Cadmium concentrations in shoots and grain increased when exposed to Cd. Only CS did not exceed the maximum Cd limit permitted in food (0.40 mg kg-1), when rates up to 1.3 mg kg-1 of Cd were applied to soil. Considering daily rice consumption levels in Brazil, Cd intake often exceeds maximum tolerable levels. Continuous monitoring of soil Cd concentrations is a pivotal step in avoiding hazards to humans. Such monitoring is important on a global scale since outside of Asia, Brazil is the leading rice-producing and rice-consuming country.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Monitoreo del Ambiente , Humanos , Suelo , Contaminantes del Suelo/análisis
18.
Rev Assoc Med Bras (1992) ; 67(9): 1240-1245, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34816914

RESUMEN

OBJECTIVE: The aim of this study was to quantify the reduction of bone mineral density with and without height adjustment. METHODS: A cross-sectional study was performed with 69 Brazilian children and adolescents vertically infected by HIV. Bone mineral density was measured by dual-energy absorptiometry in the lumbar spine. Anthropometric, demographic, and clinical variables were analyzed. A specific calculator was used for height adjustment. RESULTS: The majority of participants (52.2%) were adolescents and did not present with immunological alterations (61%). Reduced bone mineral density (Z-score <-1) was present in 23.2% and low bone mass (Z-score <-2) in 5.8%. After height adjustment, these occurrences decreased to 11.6% and 0%, respectively. Patients with reduced bone mineral density had a higher mean age and lower body mass index than patients with normal bone mineral density. CONCLUSION: The occurrence of reduced bone mineral density decreased after adjustment for height.


Asunto(s)
Enfermedades Óseas Metabólicas , Infecciones por VIH , Absorciometría de Fotón , Adolescente , Estatura , Niño , Estudios Transversales , Humanos
19.
Rev. Assoc. Med. Bras. (1992, Impr.) ; 67(9): 1240-1245, Sept. 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1351489

RESUMEN

SUMMARY OBJECTIVE: The aim of this study was to quantify the reduction of bone mineral density with and without height adjustment. METHODS: A cross-sectional study was performed with 69 Brazilian children and adolescents vertically infected by HIV. Bone mineral density was measured by dual-energy absorptiometry in the lumbar spine. Anthropometric, demographic, and clinical variables were analyzed. A specific calculator was used for height adjustment. RESULTS: The majority of participants (52.2%) were adolescents and did not present with immunological alterations (61%). Reduced bone mineral density (Z-score <-1) was present in 23.2% and low bone mass (Z-score <-2) in 5.8%. After height adjustment, these occurrences decreased to 11.6% and 0%, respectively. Patients with reduced bone mineral density had a higher mean age and lower body mass index than patients with normal bone mineral density. CONCLUSION: The occurrence of reduced bone mineral density decreased after adjustment for height.


Asunto(s)
Humanos , Niño , Adolescente , Enfermedades Óseas Metabólicas , Infecciones por VIH , Estatura , Absorciometría de Fotón , Estudios Transversales
20.
Am J Ophthalmol Case Rep ; 23: 101153, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34195481

RESUMEN

PURPOSE: To present a case of stellate nonhereditary idiopathic foveomacular retinoschisis (SNIFR) resolution associated with vitreomacular adherence (VMA) release and propose a potential contributing association between SNIFR and vitreomacular interactions. OBSERVATIONS: A 67-year-old female patient was diagnosed and followed for SNIFR in OD with spectral-domain optical coherence tomography (SD-OCT) scans at presentation and subsequent visits at 3, 6, 16 and 22 months. VMA and foveomacular retinoschisis remained unchanged on SD-OCT during the first 6 months of the follow-up. At 16-month follow-up visit, SD-OCT revealed VMA release and an important improvement of the macular schisis. At 22 months of follow-up, SNIFR cavities completely resolved in the presence of posterior hyaloid separation from the macular area without any adjunct treatment. The authors could not identify any other possible cause to justify the resolution of SNIFR other than VMA release in this case. Patient did not undergo any treatment for OD other than phacoemulsification 3 months after initial visit. CONCLUSION: The present case illustrates with SD-OCT scans a possible association between SNIFR resolution and VMA release, highlighting a potential tractional component of the posterior vitreous on the internal limiting membrane and consequent glial cells stretching with schisis formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...