Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Magn Reson Chem ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693688

RESUMEN

Multilayered plastics are widely used in food packaging and other commercial applications due to their tailored functional properties. By layering different polymers, the multilayered composite material can have enhanced mechanical, thermal, and barrier properties compared to a single plastic. However, there is a significant need to recycle these multilayer plastics, but their complex structure offers significant challenges to their successful recycling. Ultimately, the use and recycling of these complex materials requires the ability to characterize the composition and purity as a means of quality control for both production and recycling processes. New advances and availability of low-field benchtop 1H NMR spectrometers have led to increasing interest in its use for characterization of multicomponent polymers and polymer mixtures. Here, we demonstrate the capability of low-field benchtop 1H NMR spectroscopy for characterization of three common polymers associated with multilayered packaging systems (low-density polyethylene [LDPE], ethylene vinyl alcohol [EVOH], and Nylon) as well as their blends. Calibration curves are obtained for determining the unknown composition of EVOH and Nylon in multilayered packaging plastics using both the EVOH hydroxyl peak area and an observed peak shift, both yielding results in good agreement with the prepared sample compositions. Additionally, comparison of results extracted for the same samples characterized by our benchtop spectrometer and a 500-MHz spectrometer found results to be consistent and within 2 wt% on average. Overall, low-field benchtop 1H NMR spectroscopy is a reliable and accessible tool for characterization of these polymer systems.

2.
Environ Sci Ecotechnol ; 18: 100314, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37854462

RESUMEN

A reduction in building occupancy can lead to stagnant water in plumbing, and the potential consequences for water quality have gained increasing attention. To investigate this, a study was conducted during the COVID-19 pandemic, focusing on water quality in four institutional buildings. Two of these buildings were old (>58 years) and large (>19,000 m2), while the other two were new (>13 years) and small (<11,000 m2). The study revealed significant decreases in water usage in the small buildings, whereas usage remained unchanged in the large buildings. Initial analysis found that residual chlorine was rarely detectable in cold/drinking water samples. Furthermore, the pH, dissolved oxygen, total organic carbon, and total cell count levels in the first draw of cold water samples were similar across all buildings. However, the ranges of heavy metal concentrations in large buildings were greater than observed in small buildings. Copper (Cu), lead (Pb), and manganese (Mn) sporadically exceeded drinking water limits at cold water fixtures, with maximum concentrations of 2.7 mg Cu L-1, 45.4 µg Pb L-1, 1.9 mg Mn L-1. Flushing the plumbing for 5 min resulted in detectable residual at fixtures in three buildings, but even after 125 min of flushing in largest and oldest building, no residual chlorine was detected at the fixture closest to the building's point of entry. During the pandemic, the building owner conducted fixture flushing, where one to a few fixtures were operated per visit in buildings with hundreds of fixtures and multiple floors. However, further research is needed to understand the fundamental processes that control faucet water quality from the service line to the faucet. In the absence of this knowledge, building owners should create and use as-built drawings to develop flushing plans and conduct periodic water testing.

3.
Environ Sci Process Impacts ; 25(10): 1718-1731, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37781874

RESUMEN

Microplastic particles are of increasing environmental concern due to the widespread uncontrolled degradation of various commercial products made of plastic and their associated waste disposal. Recently, common technology used to repair sewer pipes was reported as one of the emission sources of airborne microplastics in urban areas. This research presents results of the multi-modal comprehensive chemical characterization of the microplastic particles related to waste discharged in the pipe repair process and compares particle composition with the components of uncured resin and cured plastic composite used in the process. Analysis of these materials employs complementary use of surface-enhanced Raman spectroscopy, scanning transmission X-ray spectro-microscopy, single particle mass spectrometry, and direct analysis in real-time high-resolution mass spectrometry. It is shown that the composition of the relatively large (100 µm) microplastic particles resembles components of plastic material used in the process. In contrast, the composition of the smaller (micrometer and sub-micrometer) particles is significantly different, suggesting their formation from unintended polymerization of water-soluble components occurring in drying droplets of the air-discharged waste. In addition, resin material type influences the composition of released microplastic particles. Results are further discussed to guide the detection and advanced characterization of airborne microplastics in future field and laboratory studies pertaining to sewer pipe repair technology.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Agua/análisis , Espectrometría de Masas , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos
4.
Environ Sci Process Impacts ; 25(10): 1670-1683, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37682218

RESUMEN

Air-discharged waste from commonly used trenchless technologies of sewer pipe repairs is an emerging and poorly characterized source of urban pollution. This study reports on the molecular-level characterization of the atmospherically discharged aqueous-phase waste condensate samples collected at four field sites of the sewer pipe repairs. The molecular composition of organic species in these samples was investigated using reversed-phase liquid chromatography coupled with a photodiode array detector and a high-resolution mass spectrometer equipped with interchangeable atmospheric pressure photoionization and electrospray ionization sources. The waste condensate components comprise a complex mixture of organic species that can partition between gas-, aqueous-, and solid-phases when water evaporates from the air-discharged waste. Identified organic species have broad variability in molecular weight, molecular structures, and carbon oxidation state, which also varied between the waste samples. All condensates contained complex mixtures of oxidized organics, N- and S-containing organics, condensed aromatics, and their functionalized derivatives that are directly released to the atmospheric environment during installations. Furthermore, semi-volatile, low volatility, and extremely low volatility organic compounds comprise 75-85% of the total compounds identified in the waste condensates. Estimates of the component-specific viscosities suggest that upon evaporation of water waste material would form the semi-solid and solid phases. The low volatilities and high viscosities of chemical components in these waste condensates will contribute to the formation of atmospheric secondary organic aerosols and atmospheric solid nanoplastic particles. Lastly, selected components expected in the condensates were quantified and found to be present at high concentrations (1-20 mg L-1) that may exceed regulatory limits.


Asunto(s)
Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Espectrometría de Masas , Agua , Aerosoles/análisis
5.
Environ Sci Technol ; 57(23): 8750-8759, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37255211

RESUMEN

Water quality impacts of new ion exchange point-of-entry residential softeners and their ability to be decontaminated following hydrocarbon exposure were investigated. During startup, significant amounts of total sulfur (445 ± 815 mg/L) and total organic carbon (937 ± 119 mg/L) were released into the drinking water that flowed through the softeners. Particulate organic carbon was released until the third regeneration cycle, and resin may also have been released. After one week of device use, softeners continued to cause organic carbon levels to be four to five times greater than background levels. Leached materials from the ion-exchange resin contributed to chlorine decay. When resins were exposed to hydrocarbon-contaminated water, they sorbed benzene, toluene, ethylbenzene, and xylenes (BTEX) and then desorbed the contaminants into drinking water during a 15 day flushing decontamination period. On day 15, benzene exceeded the federal drinking water limit for two of the four resins. The aged resin contributed to the greatest chlorine decay rates and sorbed and then retained the least amount of BTEX. Scale and biofilm on the aged resin likely prompted disinfectant reactivity and inhibited BTEX diffusion into the resin. Study results show that softeners exposed to hydrocarbon-contaminated water may need to be repeatedly flushed to remove BTEX contamination or be replaced. Additional work is recommended to better understand softener impacts on drinking water quality.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Benceno/análisis , Cloro , Carbono , Derivados del Benceno , Hidrocarburos , Tolueno/análisis , Xilenos/análisis , Contaminantes Químicos del Agua/análisis
6.
Toxicol Sci ; 193(1): 62-79, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-36912746

RESUMEN

Cured-in-place pipe (CIPP) technology is increasingly being utilized to repair aging and damaged pipes, however, there are concerns associated with the public health hazards of emissions. CIPP installation involves the manufacture of a new plastic composite pipe at the worksite and includes multiple variable components including resin material, curing methods, and operational conditions. We hypothesize styrene-based composite manufacturing emissions (CMEs) will induce greater pulmonary inflammatory responses and oxidative stress, as well as neurological toxicity compared with nonstyrene CMEs. Further, these CME-toxicological responses will be sex- and time-dependent. To test the hypothesis, representative CMEs were generated using a laboratory curing chamber and characterized using thermal desorption-gas chromatography-mass spectrometry and photoionization detector. Styrene was released during staying, isothermal curing, and cooling phases of the process and peaked during the cooling phase. Male and female C57BL6/J mice were utilized to examine alterations in pulmonary responses and neurotoxicity 1 day and 7 days following exposure to air (controls), nonstyrene-CMEs, or styrene-CMEs. Serum styrene metabolites were increased in mice exposed to styrene-CMEs. Metabolic and lipid profiling revealed alterations related to CIPP emissions that were resin-, time-, and sex-dependent. Exposure to styrene-CMEs resulted in an influx of lymphocytes in both sexes. Expression of inflammatory and oxidative stress markers, including Tnfα, Vcam1, Ccl2, Cxcl2, Il6, Cxcl1, Tgfß1, Tgmt2, and Hmox1, displayed alterations following exposure to emissions. These changes in pulmonary and neurological markers of toxicity were dependent on resin type, sex, and time. Overall, this study demonstrates resin-specific differences in representative CMEs and alterations in toxicity endpoints, which can potentially inform safer utilization of composite manufacturing processes.


Asunto(s)
Estrés Oxidativo , Estireno , Masculino , Femenino , Ratones , Animales , Estireno/toxicidad
7.
Environ Sci Technol Lett ; 10(2): 152-158, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36818461

RESUMEN

Cured-in-place-pipe (CIPP) is an onsite plastic manufacturing technology used in the U.S. and has not been evaluated for regulatory compliance with federal air pollution laws. The practice involves the discharge of manufacturing waste into the environment. The study goal was to estimate the magnitude of volatile organic compounds (VOCs) discharged into the atmosphere for styrene and nonstyrene composite manufacture and examine low-cost air monitoring sensor reliability. Time-resolved emission analysis revealed that VOC emission was not only isolated to the thermal curing period but also occurred before and after curing. In addition to the styrene monomer, other gas-phase hazardous air pollutants regulated under the Clean Air Act were also emitted. Based on typical CIPP installations, 0.9 to 16.6 U.S. tons of emitted VOCs were estimated for styrene CIPPs, and 0.09 to 1.6 U.S. tons of emitted VOCs were estimated for nonstyrene CIPPs. Because the number and size of CIPPs manufactured in a single community can vary, the total air pollution burden will significantly differ across communities. Low-cost VOC sensors commonly utilized near CIPP manufacturing activities did not accurately quantify styrene and should not be relied upon for that purpose. Up to several thousand-fold detection differences were observed. Regulatory evaluation of CIPP air pollution and PID sensor reliability assessments are recommended.

8.
Nat Nanotechnol ; 17(11): 1171-1177, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36203091

RESUMEN

Nanoplastic particles are inadequately characterized environmental pollutants that have adverse effects on aquatic and atmospheric systems, causing detrimental effects to human health through inhalation, ingestion and skin penetration1-3. At present, it is explicitly assumed that environmental nanoplastics (EnvNPs) are weathering fragments of microplastic or larger plastic debris that have been discharged into terrestrial and aquatic environments, while atmospheric EnvNPs are attributed solely to aerosolization by wind and other mechanical forces. However, the sources and emissions of unintended EnvNPs are poorly understood and are therefore largely unaccounted for in various risk assessments4. Here we show that large quantities of EnvNPs may be directly emitted into the atmosphere as steam-laden waste components discharged from a technology commonly used to repair sewer pipes in urban areas. A comprehensive chemical analysis of the discharged waste condensate has revealed the abundant presence of insoluble colloids, which after drying form solid organic particles with a composition and viscosity consistent with EnvNPs. We suggest that airborne emissions of EnvNPs from these globally used sewer repair practices may be prevalent in highly populated urban areas5, and may have important implications for air quality and toxicological levels that need to be mitigated.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Humanos , Microplásticos , Plásticos/análisis , Plásticos/química , Atmósfera , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
9.
J Hazard Mater ; 422: 126832, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34449354

RESUMEN

The cured-in-place pipe (CIPP) manufacturing process is used to repair buried pipes, and its waste commonly discharged into the air can enter nearby buildings. Exposure can prompt illness and the need for medical care. A mass balance model was applied to estimate indoor styrene concentrations due to intrusion of CIPP emissions through plumbing under different bathroom ventilation conditions. To better understand building contamination and recommend emergency response actions, calculations to estimate chemical intrusion through plumbing were developed. Field reports and study calculations showed that contractor-applied external pressures during plastic manufacture have and can displace plumbing trap water seals. Modeled styrene vapor concentrations that entered the building (1, 300, 1000 ppm) were similar to those measured at CIPP worksites. Modeling revealed that in some cases, bathroom exhaust fan operation during a CIPP project may increase indoor styrene concentrations due to enhanced entrainment of styrene-laden air from the sink and toilet. However, styrene concentrations decreased with increasing air leakage across the bathroom door due to reduced suction from the plumbing system. CIPP waste discharge should be treated as a hazardous material release and can pose a threat to human health. Immediate building evacuation, respiratory protection, provision of medical assistance, source elimination, and building decontamination are recommended.


Asunto(s)
Contaminación del Aire Interior , Socorristas , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Humanos , Plásticos , Salud Pública , Estireno/análisis
10.
J Environ Health ; 85(4): 22-31, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37736399

RESUMEN

Cured-in-place pipes (CIPPs) are plastic liners manufactured inside existing damaged sanitary sewer, storm sewer, and water pipes that extend the service life of host pipes. This process often is conducted in neighborhoods and near roadways. Before, during, and after plastic manufacture, waste materials that include volatile materials are released into the air. Emissions from this manufacturing process can affect outdoor air quality and indoor air quality for buildings connected to the sewer system. We identified key issues and solicited stakeholder feedback to estimate and manage public health risks of CIPP-generated chemical air pollution. A work group representing 13 U.S. agencies and public health associations provided feedback and prioritized public health issues for action. To mitigate potential public and occupational health risks, additional testing and public health educational efforts were recommended. An improved understanding of CIPP chemical exposure pathways, as well as stakeholder needs and interests, is essential.

11.
Environ Sci Technol ; 54(18): 11453-11463, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32786341

RESUMEN

When rainwater harvesting is utilized as an alternative water resource in buildings, a combination of municipal water and rainwater is typically required to meet water demands. Altering source water chemistry can disrupt pipe scale and biofilm and negatively impact water quality at the distribution level. Still, it is unknown if similar reactions occur within building plumbing following a transition in source water quality. The goal of this study was to investigate changes in water chemistry and microbiology at a green building following a transition between municipal water and rainwater. We monitored water chemistry (metals, alkalinity, and disinfectant byproducts) and microbiology (total cell counts, plate counts, and opportunistic pathogen gene markers) throughout two source water transitions. Several constituents including alkalinity and disinfectant byproducts served as indicators of municipal water remaining in the system since the rainwater source does not contain these constituents. In the treated rainwater, microbial proliferation and Legionella spp. gene copy numbers were often three logs higher than those in municipal water. Because of differences in source water chemistry, rainwater and municipal water uniquely interacted with building plumbing and generated distinctively different drinking water chemical and microbial quality profiles.


Asunto(s)
Agua Potable , Legionella , Agua Potable/análisis , Lluvia , Agua , Microbiología del Agua , Calidad del Agua , Abastecimiento de Agua
12.
Environ Sci Process Impacts ; 22(9): 1828-1841, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32852018

RESUMEN

The in situ manufacture of cured-in-place-pipe (CIPP) plastic liners in damaged sewer pipes is an emerging mobile source of anthropogenic air pollution. Evidence indicates volatile organic compounds (VOCs) can be released before, during, and after manufacture. The chemical composition of a popular uncured styrene-based CIPP resin was examined, along with the VOCs that remained in the new cured composite. The roles of curing temperature and heating time in waste discharged into the air were examined. Uncured resin contained approximately 39 wt% VOCs. Multiple hazardous air pollutants were present, however, 61 wt% of the uncured resin was not chemically identified. A substantial mass of VOCs (8.87 wt%) was emitted into the air during manufacture, and all cured composites contained about 3 wt% VOCs. Some VOCs were created during manufacture. Curing temperature (65.5-93.3 °C) and heating time (25-100 min) did not cause different composite VOC loadings. High styrene air concentrations inhibited the detection of other VOCs in air. It is estimated that tens of tons of VOCs may be emitted at a single CIPP manufacturing site. Regulators should consider monitoring, and potentially regulating, these growing mobile air pollution and volatile chemical product sources as they are operating in urban and rural areas often in close proximity to residential and commercial buildings.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente , Plásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...