Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurogenet ; 35(3): 285-294, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34338589

RESUMEN

The identification of mutations in the gene fruitless (fru) paved the way for understanding the genetic basis of male sexual behavior in the vinegar fly Drosophila melanogaster. D. melanogaster males perform an elaborate courtship display to the female, ultimately leading to copulation. Mutations in fru have been shown to disrupt most aspects of the male's behavioral display, rendering males behaviorally sterile. The fru genomic locus encodes for multiple transcription factor isoforms from several promoters; only those under the regulation of the most distal P1 promoter are under the control of the sex determination hierarchy and play a role in male-specific behaviors. In this study, we used CRISPR/Cas9-based targeted genome editing of the fru gene, to remove the P1 promoter region. We have shown that removal of the P1 promoter leads to a dramatic decrease in male courtship displays towards females and male-specific sterility. We have expanded the analysis of fru P1-dependent behaviors, examining male's response to courtship song and general activity levels during12-hour light: dark cycles. Our novel allele expands the mutant repertoire available for future studies of fru P1-derived function in D. melanogaster. Our fruΔP1 mutant will be useful for future studies of fru P1-derived function, as it can be homozygosed without disrupting additional downstream promoter function and can be utilized in heterozygous combinations with other extant fru alleles.


Asunto(s)
Cortejo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas del Tejido Nervioso/genética , Conducta Sexual Animal/fisiología , Factores de Transcripción/genética , Animales , Masculino , Mutación , Regiones Promotoras Genéticas
2.
Curr Biol ; 31(6): 1175-1191.e6, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33508219

RESUMEN

Although males and females largely share the same genome and nervous system, they differ profoundly in reproductive investments and require distinct behavioral, morphological, and physiological adaptations. How can the nervous system, while bound by both developmental and biophysical constraints, produce these sex differences in behavior? Here, we uncover a novel dimorphism in Drosophila melanogaster that allows deployment of completely different behavioral repertoires in males and females with minimum changes to circuit architecture. Sexual differentiation of only a small number of higher order neurons in the brain leads to a change in connectivity related to the primary reproductive needs of both sexes-courtship pursuit in males and communal oviposition in females. This study explains how an apparently similar brain generates distinct behavioral repertoires in the two sexes and presents a fundamental principle of neural circuit organization that may be extended to other species.


Asunto(s)
Drosophila melanogaster , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Olfato/fisiología , Visión Ocular/fisiología , Animales , Encéfalo/citología , Encéfalo/fisiología , Cortejo , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Femenino , Masculino , Neuronas/fisiología , Oviposición , Estimulación Luminosa
3.
J Neurogenet ; 33(2): 96-115, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30724684

RESUMEN

Desaturase1 (desat1) is one of the few genes known to be involved in the two complementary aspects of sensory communication - signal emission and signal reception - in Drosophila melanogaster. In particular, desat1 is necessary for the biosynthesis of major cuticular pheromones in both males and females. It is also involved in the male ability to discriminate sex pheromones. Each of these two sensory communication aspects depends on distinct desat1 putative regulatory regions. Here, we used (i) mutant alleles resulting from the insertion/excision of a transposable genomic element inserted in a desat1 regulatory region, and (ii) transgenics made with desat1 regulatory regions used to target desat1 RNAi. These genetic variants were used to study several reproduction-related phenotypes. In particular, we compared the fecundity of various mutant and transgenic desat1 females with regard to the developmental fate of their progeny. We also compared the mating performance in pairs of flies with altered desat1 expression in various desat1-expressing tissues together with their inability to disengage at the end of copulation. Moreover, we investigated the developmental origin of altered sex pheromone discrimination in male flies. We attempted to map some of the tissues involved in these reproduction-related phenotypes. Given that desat1 is expressed in many brain neurons and in non-neuronal tissues required for varied aspects of reproduction, our data suggest that the regulation of this gene has evolved to allow the optimal reproduction and a successful adaptation to varied environments in this cosmopolitan species.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Ácido Graso Desaturasas/genética , Conducta Sexual Animal/fisiología , Adaptación Fisiológica/genética , Animales , Animales Modificados Genéticamente , Femenino , Masculino
4.
Curr Biol ; 28(15): R840-R842, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30086319

RESUMEN

Animals rely on sensory cues to help them find suitable mates. Visual cues are particularly useful for locating mates during the day. A new study has revealed key visual neurons in male Drosophila used to identify and pursue potential mates.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Cortejo , Amor , Masculino , Neuronas , Conducta Sexual Animal
5.
Elife ; 52016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27855059

RESUMEN

Copulation is the goal of the courtship process, crucial to reproductive success and evolutionary fitness. Identifying the circuitry underlying copulation is a necessary step towards understanding universal principles of circuit operation, and how circuit elements are recruited into the production of ordered action sequences. Here, we identify key sex-specific neurons that mediate copulation in Drosophila, and define a sexually dimorphic motor circuit in the male abdominal ganglion that mediates the action sequence of initiating and terminating copulation. This sexually dimorphic circuit composed of three neuronal classes - motor neurons, interneurons and mechanosensory neurons - controls the mechanics of copulation. By correlating the connectivity, function and activity of these neurons we have determined the logic for how this circuitry is coordinated to generate this male-specific behavior, and sets the stage for a circuit-level dissection of active sensing and modulation of copulatory behavior.


Asunto(s)
Copulación , Drosophila/fisiología , Interneuronas/fisiología , Neuronas Motoras/fisiología , Vías Nerviosas , Células Receptoras Sensoriales/fisiología , Animales , Masculino , Redes Neurales de la Computación
6.
Curr Biol ; 26(18): 2508-2515, 2016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27568592

RESUMEN

Courtship in Drosophila melanogaster offers a powerful experimental paradigm for the study of innate sexually dimorphic behaviors [1, 2]. Fruit fly males exhibit an elaborate courtship display toward a potential mate [1, 2]. Females never actively court males, but their response to the male's display determines whether mating will actually occur. Sex-specific behaviors are hardwired into the nervous system via the actions of the sex determination genes doublesex (dsx) and fruitless (fru) [1]. Activation of male-specific dsx/fru(+) P1 neurons in the brain initiates the male's courtship display [3, 4], suggesting that neurons unique to males trigger this sex-specific behavior. In females, dsx(+) neurons play a pivotal role in sexual receptivity and post-mating behaviors [1, 2, 5-9]. Yet it is still unclear how dsx(+) neurons and dimorphisms in these circuits give rise to the different behaviors displayed by males and females. Here, we manipulated the function of dsx(+) neurons in the female brain to investigate higher-order neurons that drive female behaviors. Surprisingly, we found that activation of female dsx(+) neurons in the brain induces females to behave like males by promoting male-typical courtship behaviors. Activated females display courtship toward conspecific males or females, as well other Drosophila species. We uncovered specific dsx(+) neurons critical for driving male courtship and identified pheromones that trigger such behaviors in activated females. While male courtship behavior was thought to arise from male-specific central neurons, our study shows that the female brain is equipped with latent courtship circuitry capable of inducing this male-specific behavioral program.


Asunto(s)
Cortejo , Drosophila melanogaster/fisiología , Neuronas/fisiología , Animales , Encéfalo/fisiología , Femenino
7.
Fly (Austin) ; 8(2): 95-100, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483248

RESUMEN

Courtship is pivotal to successful reproduction throughout the animal kingdom. Sexual differences in the nervous system are thought to underlie courtship behavior. Male courtship behavior in Drosophila is in large part regulated by the gene fruitless (fru). fru has been reported to encode at least three putative BTB-zinc-finger transcription factors predicted to have different DNA-binding specificities. Although a large number of previous studies have demonstrated that fru plays essential roles in male courtship behavior, we know little about the function of Fru isoforms at the molecular level. Our recent study revealed that male-specific Fru isoforms are expressed in highly overlapping subsets of neurons in the male brain and ventral nerve cord. Fru isoforms play both distinct and redundant roles in male courtship behavior. Importantly, we have identified for the first time, by means of the DamID technique, direct Fru transcriptional target genes. Fru target genes overwhelmingly represent genes previously reported to be involved in the nervous system development, such as CadN, lola and pdm2. Our study provides important insight into how the sexually dimorphic neural circuits underlying reproductive behavior are established.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/crecimiento & desarrollo , Conducta Sexual Animal/fisiología , Factores de Transcripción/genética , Animales , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Proteínas del Tejido Nervioso/metabolismo , Isoformas de Proteínas/metabolismo , Caracteres Sexuales , Desarrollo Sexual , Factores de Transcripción/metabolismo
8.
Curr Biol ; 24(7): 725-30, 2014 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24631243

RESUMEN

Mating elicits profound behavioral and physiological changes in many species that are crucial for reproductive success. After copulation, Drosophila melanogaster females reduce their sexual receptivity and increase egg laying [1, 2]. Transfer of male sex peptide (SP) during copulation mediates these postmating responses [1, 3-6] via SP sensory neurons in the uterus defined by coexpression of the proprioceptive neuronal marker pickpocket (ppk) and the sex-determination genes doublesex (dsx) and fruitless (fru) [7-9]. Although neurons expressing dsx downstream of SP signaling have been shown to regulate postmating behaviors [9], how the female nervous system coordinates the change from pre- to postcopulatory states is unknown. Here, we show a role of the neuromodulator octopamine (OA) in the female postmating response. Lack of OA disrupts postmating responses in mated females, while increase of OA induces postmating responses in virgin females. Using a novel dsx(FLP) allele, we uncovered dsx neuronal elements associated with OA signaling involved in modulation of postmating responses. We identified a small subset of sexually dimorphic OA/dsx(+) neurons (approximately nine cells in females) in the abdominal ganglion. Our results are consistent with a model whereby OA neuronal signaling increases after copulation, which in turn modulates changes in female behavior and physiology in response to reproductive state.


Asunto(s)
Drosophila/fisiología , Octopamina/metabolismo , Conducta Sexual Animal/efectos de los fármacos , Animales , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Femenino , Datos de Secuencia Molecular , Octopamina/farmacología , Octopamina/fisiología , Caracteres Sexuales
9.
Curr Biol ; 24(3): 229-41, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24440396

RESUMEN

BACKGROUND: In Drosophila, male courtship behavior is regulated in large part by the gene fruitless (fru). fru encodes a set of putative transcription factors that promote male sexual behavior by controlling the development of sexually dimorphic neuronal circuitry. Little is known about how Fru proteins function at the level of transcriptional regulation or the role that isoform diversity plays in the formation of a male-specific nervous system. RESULTS: To characterize the roles of sex-specific Fru isoforms in specifying male behavior, we generated novel isoform-specific mutants and used a genomic approach to identify direct Fru isoform targets during development. We demonstrate that all Fru isoforms directly target genes involved in the development of the nervous system, with individual isoforms exhibiting unique binding specificities. We observe that fru behavioral phenotypes are specified by either a single isoform or a combination of isoforms. Finally, we illustrate the utility of these data for the identification of novel sexually dimorphic genomic enhancers and novel downstream regulators of male sexual behavior. CONCLUSIONS: These findings suggest that Fru isoform diversity facilitates both redundancy and specificity in gene expression, and that the regulation of neuronal developmental genes may be the most ancient and conserved role of fru in the specification of a male-specific nervous system.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas del Tejido Nervioso/genética , Neurogénesis/genética , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Factores de Transcripción/genética , Animales , Secuencia de Bases , Sistema Nervioso Central/metabolismo , Drosophila melanogaster/metabolismo , Técnicas de Inactivación de Genes , Masculino , Datos de Secuencia Molecular , Isoformas de Proteínas/genética
10.
Proc Natl Acad Sci U S A ; 109(1): 249-54, 2012 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-22114190

RESUMEN

Animals often use sex pheromones for mate choice and reproduction. As for other signals, the genetic control of the emission and perception of sex pheromones must be tightly coadapted, and yet we still have no worked-out example of how these two aspects interact. Most models suggest that emission and perception rely on separate genetic control. We have identified a Drosophila melanogaster gene, desat1, that is involved in both the emission and the perception of sex pheromones. To explore the mechanism whereby these two aspects of communication interact, we investigated the relationship between the molecular structure, tissue-specific expression, and pheromonal phenotypes of desat1. We characterized the five desat1 transcripts-all of which yielded the same desaturase protein-and constructed transgenes with the different desat1 putative regulatory regions. Each region was used to target reporter transgenes with either (i) the fluorescent GFP marker to reveal desat1 tissue expression, or (ii) the desat1 RNAi sequence to determine the effects of genetic down-regulation on pheromonal phenotypes. We found that desat1 is expressed in a variety of neural and nonneural tissues, most of which are involved in reproductive functions. Our results suggest that distinct desat1 putative regulatory regions independently drive the expression in nonneural and in neural cells, such that the emission and perception of sex pheromones are precisely coordinated in this species.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Ácido Graso Desaturasas/genética , Regulación Enzimológica de la Expresión Génica , Sistema Nervioso/enzimología , Percepción/fisiología , Atractivos Sexuales/metabolismo , Abdomen , Animales , Antenas de Artrópodos/citología , Antenas de Artrópodos/enzimología , Encéfalo/citología , Encéfalo/enzimología , Regulación hacia Abajo/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Ácido Graso Desaturasas/metabolismo , Femenino , Genes de Insecto/genética , Cabeza , Hidrocarburos/metabolismo , Integumento Común , Masculino , Sistema Nervioso/citología , Interferencia de ARN , Transgenes/genética
11.
Curr Biol ; 20(9): 836-40, 2010 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-20399094

RESUMEN

Synapses mediate inductive interactions for the proper development of pre- and postsynaptic cells: presynaptic electrical activities and synaptic transmission ensure the organization of postsynaptic structures, whereas neurotrophins produced in postsynaptic cells support the survival and enlargement of presynaptic partners. In Drosophila, a motor nerve has been implicated in the induction of the muscle of Lawrence (MOL), the formation of which is male specific and depends on the neural expression of fruitless (fru), a neural sex-determinant gene. Here we report the identification of a single motoneuron essential for inducing the MOL, which we call the MOL-inducing (Mind) motoneuron. The MOL is restored in fru mutant males, which otherwise lack the MOL, if the fru(+) transgene is selectively expressed in the Mind motoneuron by mosaic analysis with a repressible cell marker. We further demonstrate that synaptic outputs from the Mind motoneuron are indispensable to MOL induction, because the blockage of synaptic transmission by shibire(ts) (shi(ts)) during the critical period in development abolished the MOL formation in males. Our finding that sex-specific neurons instruct sexually dimorphic development of their innervating targets through synaptic interactions points to the novel mechanism whereby the pre- and postsynaptic partners coordinately establish their sexual identity.


Asunto(s)
Drosophila melanogaster/embriología , Neuronas Motoras/fisiología , Diferenciación Sexual/genética , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Inducción Embrionaria/genética , Inducción Embrionaria/fisiología , Femenino , Genes del Desarrollo/genética , Genes del Desarrollo/fisiología , Masculino , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Terminales Presinápticos/fisiología , Diferenciación Sexual/efectos de la radiación , Sinapsis/genética , Sinapsis/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
12.
Arch Insect Biochem Physiol ; 64(4): 157-63, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17366598

RESUMEN

TATA-box-binding protein (TBP)-related factor (Trf)2 is a member of the family of TBP-related factors present in metazoan organisms. In Drosophila, Trf2 immunoprecipitates with the nucleosome remodeling factor (NURF) chromatin remodeling complex and the DNA replication element (DRE)-binding factor DREF. When it forms a complex with DREF, Trf2 activates transcription from the DRE-binding sites of the proliferating cell nuclear antigen (PCNA) gene. Despite these observations at the molecular level, no mutations in the trf2 locus have been found in Drosophila. Here, we identify two P-element insertion alleles, PL28 and GS7403, as hypomorphic mutants with a decreased expression level of trf2. Pupae of these mutant alleles show failure in anterior spiracle eversion, a hallmark of mutations in the loci associated with ecdysteroid signaling.


Asunto(s)
Elementos Transponibles de ADN/genética , Proteínas de Drosophila/genética , Drosophila/genética , Mutación/genética , Fenotipo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Animales , Cartilla de ADN , Proteínas de Drosophila/metabolismo , Mapeo Restrictivo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...