Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Cogn Sci ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38811318

RESUMEN

Behavior is guided by the compatibility of expectations based on past experience and the outcome. In a recent study, Fouragnan and colleagues report that absolute prediction error (PE)-related heart-evoked potentials (HEPs) differ according to the cardiac cycle phase at outcome, and that the magnitude of this effect positively correlates with reward learning in healthy adults.

2.
Behav Brain Res ; 468: 115042, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38723676

RESUMEN

Hippocampus is essential for episodic memory formation, lesion studies demonstrating its role especially in processing spatial and temporal information. Further, adult hippocampal neurogenesis (AHN) in the dentate gyrus (DG) has also been linked to learning. To study hippocampal neuronal activity during events like learning, in vivo calcium imaging has become increasingly popular. It relies on the use of adeno-associated viral (AAV) vectors, which seem to lead to a decrease in AHN when applied on the DG. More notably, imaging requires the implantation of a relatively large lens into the tissue. Here, we examined how injection of an AAV vector and implantation of a 1-mm-diameter lens into the dorsal DG routinely used to image calcium activity impact the behavior of adult male C57BL/6 mice. To this aim, we conducted open-field, object-recognition and object-location tasks at baseline, after AAV vector injection, and after lens implantation. Finally, we determined AHN from hippocampal slices using a doublecortin-antibody. According to our results, the operations needed for in vivo imaging of the dorsal DG did not have adverse effects on behavior, although we noticed a decrease in AHN ipsilaterally to the operations. Thus, our results suggest that in vivo imaging can be safely used to, for example, correlate patterns of calcium activity with learned behavior. One should still keep in mind that the defects on the operated side might be functionally compensated by the (hippocampus in the) contralateral hemisphere.


Asunto(s)
Hipocampo , Ratones Endogámicos C57BL , Neurogénesis , Animales , Neurogénesis/fisiología , Masculino , Hipocampo/metabolismo , Ratones , Calcio/metabolismo , Conducta Animal/fisiología , Reconocimiento en Psicología/fisiología , Giro Dentado/metabolismo , Giro Dentado/fisiología , Dependovirus , Vectores Genéticos/administración & dosificación , Lateralidad Funcional/fisiología
3.
eNeuro ; 11(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38627063

RESUMEN

Trace eyeblink conditioning (TEBC) has been widely used to study associative learning in both animals and humans. In this paradigm, conditioned responses (CRs) to conditioned stimuli (CS) serve as a measure for retrieving learned associations between the CS and the unconditioned stimuli (US) within a trial. Memory consolidation, that is, learning over time, can be quantified as an increase in the proportion of CRs across training sessions. However, how hippocampal oscillations differentiate between successful memory retrieval within a session and consolidation across TEBC training sessions remains unknown. To address this question, we recorded local field potentials (LFPs) from the rat dorsal hippocampus during TEBC and investigated hippocampal oscillation dynamics associated with these two functions. We show that transient broadband responses to the CS were correlated with memory consolidation, as indexed by an increase in CRs across TEBC sessions. In contrast, induced alpha (8-10 Hz) and beta (16-20 Hz) band responses were correlated with the successful retrieval of the CS-US association within a session, as indexed by the difference in trials with and without CR.


Asunto(s)
Condicionamiento Palpebral , Hipocampo , Consolidación de la Memoria , Recuerdo Mental , Ratas Long-Evans , Hipocampo/fisiología , Masculino , Condicionamiento Palpebral/fisiología , Animales , Consolidación de la Memoria/fisiología , Recuerdo Mental/fisiología , Aprendizaje por Asociación/fisiología , Ratas , Condicionamiento Clásico/fisiología , Parpadeo/fisiología
4.
J Neurophysiol ; 131(5): 797-806, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38533969

RESUMEN

Learning outcome is modified by the degree to which the subject responds and pays attention to specific stimuli. Our recent research suggests that presenting stimuli in contingency with a specific phase of the cardiorespiratory rhythm might expedite learning. Specifically, expiration-diastole (EXP-DIA) is beneficial for learning trace eyeblink conditioning (TEBC) compared with inspiration-systole (INS-SYS) in healthy young adults. The aim of this study was to investigate whether the same holds true in healthy elderly adults (n = 50, aged >70 yr). Participants were instructed to watch a silent nature film while TEBC trials were presented at either INS-SYS or EXP-DIA (separate groups). Learned responses were determined as eyeblinks occurring after the tone conditioned stimulus (CS), immediately preceding the air puff unconditioned stimulus (US). Participants were classified as learners if they made at least five conditioned responses (CRs). Brain responses to the stimuli were measured by electroencephalogram (EEG). Memory for the film and awareness of the CS-US contingency were evaluated with a questionnaire. As a result, participants showed robust brain responses to the CS, acquired CRs, and reported awareness of the CS-US relationship to a variable degree. There was no difference between the INS-SYS and EXP-DIA groups in any of the above. However, when only participants who learned were considered, those trained at EXP-DIA (n = 11) made more CRs than those trained at INS-SYS (n = 13). Thus, learned performance could be facilitated in those elderly who learned. However, training at a specific phase of cardiorespiratory rhythm did not increase the proportion of participants who learned.NEW & NOTEWORTHY We trained healthy elderly individuals in trace eyeblink conditioning, either at inspiration-systole or at expiration-diastole. Those who learned exhibited more conditioned responses when trained at expiration-diastole rather than inspiration-systole. However, there was no difference between the experimental groups in the proportion of individuals who learned or did not learn.


Asunto(s)
Condicionamiento Palpebral , Humanos , Masculino , Anciano , Femenino , Condicionamiento Palpebral/fisiología , Electroencefalografía , Anciano de 80 o más Años , Frecuencia Cardíaca/fisiología , Parpadeo/fisiología , Condicionamiento Clásico/fisiología
5.
Neurosci Lett ; 823: 137665, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38301912

RESUMEN

Good aerobic and metabolic fitness associates with better cognitive performance and brain health. Conversely, poor metabolic health predisposes to neurodegenerative diseases. Our previous findings indicate that rats selectively bred for Low Capacity for Running (LCR) show less synaptic plasticity and more inflammation in the hippocampus and perform worse in tasks requiring flexible cognition than rats bred for High Capacity for Running (HCR). Here we aimed to determine whether hippocampal electrophysiological activity related to learning and memory would be impaired in LCR compared to HCR rats. We also studied whether an exercise intervention could even out the possible differences. We conducted in vivo recordings from the dorsal hippocampus under terminal urethane anesthesia in middle-aged sedentary males and female rats, and in females allowed to access running wheels for 6 weeks. Our results indicate stronger long-term potentiation (LTP) in the CA3-CA1 synapse in HCR than LCR rats, and in female than male rats. Compared to LCR rats, HCR rats had more dentate spikes and more gamma epochs, the occurrence of which also correlated positively with the magnitude of LTP. Voluntary running reduced the differences between female LCR and HCR rats. In conclusion, low innate fitness links to reduced hippocampal function and plasticity which can seems to improve with voluntary aerobic exercise even in middle age.


Asunto(s)
Potenciación a Largo Plazo , Condicionamiento Físico Animal , Ratas , Masculino , Femenino , Animales , Hipocampo , Electrofisiología , Condicionamiento Físico Animal/fisiología
6.
Hippocampus ; 33(11): 1228-1232, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37221699

RESUMEN

Breathing and heartbeat synchronize to each other and to brain function and affect cognition in humans. However, it is not clear how cardiorespiratory rhythms modulate such basic processes as synaptic plasticity thought to underlie learning. Thus, we studied if respiration and cardiac cycle phases at burst stimulation onset affect hippocampal long-term potentiation (LTP) in the CA3-CA1 synapse in urethane-anesthetized adult male Sprague-Dawley rats. In a between-subjects design, we timed burst stimulation of the ventral hippocampal commissure (vHC) to systole or diastole either during expiration or inspiration and recorded responses throughout the hippocampus with a linear probe. As classical conditioning in humans seems to be most efficient at expiration-diastole, we also expected LTP to be most efficient if burst stimulation was targeted to expiration-diastole. However, LTP was induced equally in all four groups and respiration and cardiac cycle phase did not modulate CA1 responses to vHC stimulation overall. This could be perhaps because we bypassed all natural routes of external influences on the CA1 by directly stimulating the vHC. In the future, the effect of cardiorespiratory rhythms on synaptic plasticity could also be studied in awake state and in other parts of the hippocampal tri-synaptic loop.


Asunto(s)
Potenciación a Largo Plazo , Uretano , Humanos , Ratas , Masculino , Animales , Potenciación a Largo Plazo/fisiología , Uretano/farmacología , Ratas Sprague-Dawley , Hipocampo/fisiología , Anestésicos Intravenosos/farmacología , Plasticidad Neuronal , Inhibidores Enzimáticos/farmacología , Respiración , Estimulación Eléctrica
7.
Behav Brain Res ; 443: 114331, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36774999

RESUMEN

Good aerobic fitness associates positively with cognitive performance and brain health and conversely, low aerobic fitness predisposes to neurodegenerative diseases. To study how genotype together with exercise, started at older age, affects brain and behavior, we utilized rats that differ in inherited aerobic fitness. Rats bred for Low Capacity for Running (LCR) are shown to display less synaptic plasticity and more inflammation in the hippocampus and perform worse than rats bred for a High Capacity for Running (HCR) in tasks requiring flexible cognition. Here we used middle-aged (∼ 16 months) HCR and LCR rats to study how genotype and sex associate with anxiety and neural information filtering, termed sensory gating. Further, we assessed how inherited aerobic capacity associates with hippocampus-dependent learning, measured with contextual fear conditioning task. In females, we also investigated the effects of voluntary wheel running (5 weeks) on these characteristics. Our results indicate that independent of sex or voluntary running, HCR rats were more anxious in open-field tasks, exhibited lower sensory gating and learned more efficiently in contextual fear conditioning task than LCR rats. Voluntary running did not markedly affect innate behavior but slightly decreased the differences between female LCR and HCR rats in fear learning. In conclusion, inherited fitness seems to determine cognitive and behavioral traits independent of sex. Although the traits proved to be rather resistant to change at adult age, learning was slightly improved following exercise in LCR females, prone to obesity and poor fitness.


Asunto(s)
Actividad Motora , Condicionamiento Físico Animal , Ratas , Femenino , Animales , Condicionamiento Físico Animal/métodos , Tolerancia al Ejercicio , Genotipo , Obesidad
8.
Neurosci Biobehav Rev ; 142: 104908, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220367

RESUMEN

The body is, in essence, an ensemble of interacting systems with biorhythms nested at multiple timescales. Traditionally, the focus in the study of body-brain interaction has been on clarifying the ways by which our brain orchestrates the functions of the body. During recent decades theories building on the opposite causal direction, namely how the different body systems influence the brain and mind, have been dramatically increasing. Despite influential theories, direct research evidence about the link between bodily rhythms, brain and cognition are scattered. Here, we review existing evidence on how the electrophysiological activity of the brain on one hand, and perception or cognition on the other hand depend on the phase of the physiological cycles of the body, specifically those of the heartbeat and respiration. We summarize the accumulated evidence from human and animal studies and their implication for the theoretical reasoning. Last, besides elaborating how the cycles of bodily rhythms influence brain signaling and perceptual cognitive functions, we present potential explanations and answers to why this link might exist.


Asunto(s)
Encéfalo , Cognición , Animales , Humanos , Cognición/fisiología , Encéfalo/fisiología , Respiración , Periodicidad , Frecuencia Cardíaca
9.
Hippocampus ; 32(11-12): 808-817, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36111841

RESUMEN

Dentate gyrus (DG) is important for pattern separation and spatial memory, and it is thought to gate information flow to the downstream hippocampal subregions. Dentate spikes (DSs) are high-amplitude, fast, positive local-field potential events taking place in the DG during immobility and sleep, and they have been connected to memory consolidation in rodents. DSs are a result of signaling from the entorhinal cortex (EC) to the DG, and they suppress firing of pyramidal cells in the CA3 and CA1. To study the effects of DSs to signaling in the hippocampal tri-synaptic loop, we electrically stimulated the afferent fibers of the DG, CA3, and CA1 in adult male Sprague-Dawley rats at different delays from DSs. Responses to stimulation were increased in the EC-DG synapse during DSs, and the effect was amplified after theta-burst stimulation. We concluded that DSs strengthen the excitatory signal from the EC to the DG, which is reinforced by synapse potentiation and increased excitability of granule cells after theta-burst stimulation. This signal boosting may function in enhancing plastic changes in the DG-CA3 synapse. As responses in the CA3 and CA1 remained unaffected by the DS, the DS-contingent silencing of pyramidal cells seems to be a result of a decrease in excitatory input rather than a decrease in the excitability of the pyramidal cells themselves. In addition, we found that the DSs occur asynchronously in the left and right hippocampi, giving novel evidence of lateralization of the rodent hippocampus.


Asunto(s)
Giro Dentado , Hipocampo , Ratas , Animales , Masculino , Giro Dentado/fisiología , Ratas Sprague-Dawley , Hipocampo/fisiología , Corteza Entorrinal/fisiología , Estimulación Eléctrica
10.
Front Neural Circuits ; 16: 885684, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431819

RESUMEN

Functions of the brain and body are oscillatory in nature and organized according to a logarithmic scale. Brain oscillations and bodily functions such as respiration and heartbeat appear nested within each other and coupled together either based on phase or based on phase and amplitude. This facilitates communication in wide-spread neuronal networks and probably also between the body and the brain. It is a widely accepted view, that nested electrophysiological brain oscillations involving the neocortex, thalamus, and the hippocampus form the basis of memory consolidation. This applies especially to declarative memories, that is, memories of life events, for example. Here, we present our view of hippocampal contribution to the process of memory consolidation based on the general ideas stated above and on some recent findings on the topic by us and by other research groups. We propose that in addition to the interplay between neocortical slow oscillations, spindles, and hippocampal sharp-wave ripples during sleep, there are also additional mechanisms available in the hippocampus to control memory consolidation: a rather non-oscillatory hippocampal electrophysiological phenomenon called the dentate spike might provide a means to not only consolidate but to also modify the neural representation of declarative memories. Further, we suggest that memory consolidation in the hippocampus might be in part paced by breathing. These considerations might open new possibilities for regulating memory consolidation in rest and sleep.


Asunto(s)
Consolidación de la Memoria , Neocórtex , Hipocampo/fisiología , Memoria/fisiología , Consolidación de la Memoria/fisiología , Neocórtex/fisiología , Sueño/fisiología
11.
J Neurophysiol ; 127(3): 767-775, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35138956

RESUMEN

Rhythms of breathing and heartbeat are linked to each other as well as to the rhythms of the brain. Our recent studies suggest that presenting conditioned stimulus during expiration or during the diastolic phase of the cardiac cycle facilitates neural processing of that stimulus and improves learning in a conditioning task. To date, it has not been examined whether using information from both respiration and cardiac cycle phases simultaneously allows even more efficient modulation of learning. Here, we studied whether the timing of the conditioned stimulus to different cardiorespiratory rhythm phase combinations affects learning in a conditioning task in healthy young adults. The results were consistent with previous reports: timing the conditioned stimulus to diastole during expiration was more beneficial for learning than timing it to systole during inspiration. Cardiac cycle phase seemed to explain most of this variation in learning at the behavioral level. Brain-evoked potentials (N1) elicited by the conditioned stimulus and recorded using electroencephalogram were larger when the conditioned stimulus was presented to diastole during expiration than when it was presented to systole during inspiration. Breathing phase explained the variation in the N1 amplitude. To conclude, our findings suggest that noninvasive monitoring of bodily rhythms combined with closed-loop control of stimulation can be used to promote learning in humans. The next step will be to test if performance can also be improved in humans with compromised cognitive ability, such as in older people with memory impairments.NEW & NOTEWORTHY We report, for the first time, that the rhythms of breathing and the beating of the heart have a phase combination that is indicative of a neural state beneficial for cognition. This suggests that bodily rhythms not only modulate cognition but that this phenomenon can also be noninvasively harnessed to improve learning in humans.


Asunto(s)
Condicionamiento Palpebral , Anciano , Parpadeo , Condicionamiento Clásico/fisiología , Condicionamiento Palpebral/fisiología , Electroencefalografía , Humanos , Respiración , Adulto Joven
12.
Brain Behav Immun ; 97: 250-259, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34224822

RESUMEN

BACKGROUND: Increasing evidence shows obesity and poor metabolic health are associated with cognitive deficits, but the mechanistic connections have yet to be resolved. We studied rats selectively bred for low and high intrinsic aerobic capacity in order to test the association between low physical fitness, a genetic predisposition for obesity, and brain health. We hypothesized that low-capacity runner (LCR) rats with concurrently greater levels of adiposity would have increased hippocampal inflammation and reduced plasticity compared to the more physically fit high-capacity runner (HCR) rats. METHODS: We examined markers for inflammation and brain plasticity in the hippocampi of LCR rats and compared them to HCR rats. The effect of age was determined by studying the rats at a young age (8 weeks) and later in life (40 weeks). We used western blots and immunohistochemistry to quantify the expression of target proteins. RESULTS: Our study showed that the number of adult-born new neurons in the hippocampus was significantly lower in LCR rats than it was in HCR rats already at a young age and that the difference became more pronounced with age. The expression of synaptic proteins was higher in young animals relative to older ones. Brain inflammation tended to be higher in LCR rats than it was in the HCR rats, and more prominent in older rats than in young ones. CONCLUSION: Our study is the first to demonstrate that low intrinsic aerobic fitness that is associated with obesity and poor metabolic health is also linked with reduced hippocampal structural plasticity at a young age. Our results also suggest that inflammation of the brain could be one factor mediating the link between obesity and poor cognitive performance.


Asunto(s)
Encefalitis , Condicionamiento Físico Animal , Adiposidad , Animales , Tolerancia al Ejercicio , Hipocampo , Obesidad/complicaciones , Ratas
13.
PLoS Biol ; 19(5): e3001213, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33956790

RESUMEN

Understanding brain operation demands linking basic behavioral traits to cell-type specific dynamics of different brain-wide subcircuits. This requires a system to classify the basic operational modes of neurons and circuits. Single-cell phenotyping of firing behavior during ongoing oscillations in vivo has provided a large body of evidence on entorhinal-hippocampal function, but data are dispersed and diverse. Here, we mined literature to search for information regarding the phase-timing dynamics of over 100 hippocampal/entorhinal neuron types defined in Hippocampome.org. We identified missing and unresolved pieces of knowledge (e.g., the preferred theta phase for a specific neuron type) and complemented the dataset with our own new data. By confronting the effect of brain state and recording methods, we highlight the equivalences and differences across conditions and offer a number of novel observations. We show how a heuristic approach based on oscillatory features of morphologically identified neurons can aid in classifying extracellular recordings of single cells and discuss future opportunities and challenges towards integrating single-cell phenotypes with circuit function.


Asunto(s)
Hipocampo/anatomía & histología , Hipocampo/metabolismo , Hipocampo/fisiología , Potenciales de Acción/fisiología , Animales , Corteza Entorrinal/fisiología , Ratones , Neuronas/fisiología , Fenotipo , Ratas
14.
Physiol Behav ; 236: 113417, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33838202

RESUMEN

Metabolic syndrome (MetS) is a known risk factor for cognitive decline. Using polygenic rat models selectively bred for high and low intrinsic exercise capacity and simultaneously modelling as low and high innate risk factor for MetS respectively, we have previously shown that adult animals with lower exercise capacity/higher MetS risk perform poorly in tasks requiring flexible cognition. However, it is not known whether these deficits in cognition are present already at young age. Also, it is unclear whether the high risk genome is related also to lower-level cognition, such as sensory gating measured as prepulse inhibition. In this study, young and adult (5-8 weeks and ~9 months) rats selectively bred for 36 generations as High-Capacity Runners (HCR) or Low-Capacity Runners (LCR) were tested for behavior in an open field task, modulation of startle reflex, and spatial learning in a T-maze. HCR rats were more active in the open field than LCR rats independent of age. Responses to the startle stimulus habituated to the same extent in LCR compared to HCR rats when young, but as adults, stronger habituation was seen in the HCR animals. The prepulse inhibition of startle response was equally strong in young HCR and LCR animals but the effect was shorter lasting in HCR animals. In T-maze, adult HCR animals unexpectedly showed attenuated learning, but we interpret this finding to stem from differences in motivation rather than learning ability. Overall, in the LCR rats with the risk genome for poor aerobic fitness and MetS, indications of compromised cognitive function are present already at a young age.


Asunto(s)
Síndrome Metabólico , Condicionamiento Físico Animal , Animales , Cognición , Ratas , Factores de Riesgo
15.
Front Cell Neurosci ; 15: 778900, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35046775

RESUMEN

Optogenetics, a field concentrating on controlling cellular functions by means of light-activated proteins, has shown tremendous potential in neuroscience. It possesses superior spatiotemporal resolution compared to the surgical, electrical, and pharmacological methods traditionally used in studying brain function. A multitude of optogenetic tools for neuroscience have been created that, for example, enable the control of action potential generation via light-activated ion channels. Other optogenetic proteins have been used in the brain, for example, to control long-term potentiation or to ablate specific subtypes of neurons. In in vivo applications, however, the majority of optogenetic tools are operated with blue, green, or yellow light, which all have limited penetration in biological tissues compared to red light and especially infrared light. This difference is significant, especially considering the size of the rodent brain, a major research model in neuroscience. Our review will focus on the utilization of red light-operated optogenetic tools in neuroscience. We first outline the advantages of red light for in vivo studies. Then we provide a brief overview of the red light-activated optogenetic proteins and systems with a focus on new developments in the field. Finally, we will highlight different tools and applications, which further facilitate the use of red light optogenetics in neuroscience.

16.
Eur J Neurosci ; 53(6): 1885-1904, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33382141

RESUMEN

Treatment of brain cancer, glioma, can cause cognitive impairment as a side-effect, possibly because it disrupts the integrity of the hippocampus, a structure vital for normal memory. Radiotherapy is commonly used to treat glioma, but the effects of irradiation on the brain are still poorly understood, and other biological effects have not been extensively studied. Here, we exposed healthy adult male rats to moderate-dose irradiation of the head. We found no effect of irradiation on systemic inflammation, weight gain or gut microbiota diversity, although it increased the abundance of Bacteroidaceae family, namely Bacteroides genus in the gut microbiota. Irradiation had no effect on long-term potentiation in the CA3-CA1 synapse or endogenous hippocampal electrophysiology, but it did reduce adult hippocampal neurogenesis and impaired short-term spatial recognition memory. However, no overall cognitive impairment was observed. To summarize, our results suggest that in adult male rats head irradiation does not compromise health or cognition overall even though the number of new, adult-born hippocampal neurons is decreased. Thus, the sole effects of head irradiation on the body, brain and cognition might be less harmful than previously thought, and the cognitive decline experienced by cancer patients might originate from physiological and mental effects of the disease itself. Therefore, to increase the translational value of animal studies, the effects of irradiation should be studied together with cancer, in older animals, using varying irradiation protocols and doses.


Asunto(s)
Neurogénesis , Memoria Espacial , Animales , Hipocampo , Humanos , Potenciación a Largo Plazo , Masculino , Hojas de la Planta , Ratas
17.
J Neurophysiol ; 123(5): 1671-1681, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32208887

RESUMEN

Hippocampus forms neural representations of real-life events including multimodal information of spatial and temporal context. These representations, i.e., organized sequences of neuronal firing, are repeated during following rest and sleep, especially when so-called sharp-wave ripples (SPW-Rs) characterize hippocampal local field potentials. This SPW-R -related replay is thought to underlie memory consolidation. Here, we set out to explore how hippocampal CA1 pyramidal cells respond to the conditioned stimulus during trace eyeblink conditioning and how these responses manifest during SPW-Rs in awake adult female New Zealand White rabbits. Based on reports in rodents, we expected SPW-Rs to take place in bursts, possibly according to a slow endogenous rhythm. In awake rabbits, half of all SPW-Rs took place in bursts, but no endogenous slow rhythm appeared. Conditioning trials suppressed SPW-Rs while increasing theta for a period of several seconds. As expected based on previous findings, only a quarter of the putative CA1 pyramidal cells increased firing in response to the conditioned stimulus. Compared with other cells, rate-increasing cells were more active during spontaneous epochs of hippocampal theta while response profile during conditioning did not affect firing during SPW-Rs. Taken together, CA1 pyramidal cell firing during SPW-Rs is not limited to cells that fired during the preceding experience. Furthermore, the importance of possible reactivations taking place during theta epochs on memory consolidation warrants further investigation.NEW & NOTEWORTHY We studied hippocampal sharp-wave ripples and theta and CA1 pyramidal cell activity during trace eyeblink conditioning in rabbits. Conditioning trials suppressed ripples while increasing theta for a period of several seconds. A quarter of the cells increased firing in response to the conditioned stimulus and fired extensively during endogenous theta as well as ripples. The role of endogenous theta epochs in off-line memory consolidation should be studied further.


Asunto(s)
Ondas Encefálicas/fisiología , Región CA1 Hipocampal/fisiología , Condicionamiento Clásico/fisiología , Células Piramidales/fisiología , Animales , Conducta Animal/fisiología , Parpadeo/fisiología , Electrocorticografía , Femenino , Conejos , Ritmo Teta/fisiología
18.
Psychophysiology ; 56(9): e13387, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31026071

RESUMEN

Rhythmic variation in heart rate and respiratory pattern are coupled in a way that optimizes the level of oxygen in the blood stream of the lungs and the body as well as saves energy in pulmonary gas exchange. It has been suggested that the cardiac cycle and respiratory pattern are coupled to neural oscillations of the brain. Yet, studies on how this rhythmic coupling is related to behavior are scarce. There is some evidence that, for example, the phase of respiration affects memory retrieval and the electrophysiological oscillatory state of the limbic system. It is also known that the phase of the cardiac cycle and hippocampal electrophysiological oscillations alone affect learning. Here, we studied whether the timing of training trials to different phases of respiration affects learning trace eyeblink conditioning in healthy adult humans. Trials consisting of a neutral conditioned stimulus (200-ms tone) and a slightly aversive unconditioned stimulus (100-ms air puff toward the eye), presented with a 600-ms trace interval, were timed to either inspiration or expiration. A control group was trained regardless of respiratory phase. We found that, at the end of training, the rate of conditioned responses was higher in the group trained at expiration than it was in the other two groups. That is, brain state seems to fluctuate as a function of respiratory rhythm, and this fluctuation is also behaviorally relevant, exerting its effect on, at the least, a simple form of associative learning.


Asunto(s)
Aprendizaje por Asociación/fisiología , Parpadeo/fisiología , Condicionamiento Clásico/fisiología , Condicionamiento Palpebral/fisiología , Arritmia Sinusal Respiratoria/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
19.
J Neurophysiol ; 121(1): 131-139, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30461365

RESUMEN

Hippocampal dentate spikes (DSs) are short-duration, large-amplitude fluctuations in hilar local field potentials and take place while resting and sleeping. During DSs, dentate gyrus granule cells increase firing while CA1 pyramidal cells decrease firing. Recent findings suggest DSs play a significant role in memory consolidation after training on a hippocampus-dependent, nonspatial associative learning task. Here, we aimed to find out whether DSs are important in other types of hippocampus-dependent learning tasks as well. To this end, we trained adult male Sprague-Dawley rats in a spatial reference memory task, a fixed interval task, and a pattern separation task. During a rest period immediately after each training session, we either let neural activity to take place as usual, timed electrical stimulation of the ventral hippocampal commissure (vHC) to immediately follow DSs, or applied the vHC stimulation during a random neural state. We found no effect of vHC stimulation on performance in the spatial reference memory task or in the fixed interval task. Surprisingly, vHC stimulation, especially contingent on DSs, improved performance in the pattern separation task. In conclusion, the behavioral relevance of hippocampal processing and DSs seems to depend on the task at hand. It could be that in an intact brain, offline memory consolidation by default involves associating neural representations of temporally separate but related events. In some cases this might be beneficial for adaptive behavior in the future (associative learning), while in other cases it might not (pattern separation). NEW & NOTEWORTHY The behavioral relevance of dentate spikes seems to depend on the learning task at hand. We suggest that dentate spikes are related to associating neural representations of temporally separate but related events within the dentate gyrus. In some cases this might be beneficial for adaptive behavior in the future (associative learning), while in other cases it might not (pattern separation).


Asunto(s)
Aprendizaje por Asociación/fisiología , Giro Dentado/fisiología , Aprendizaje por Laberinto/fisiología , Consolidación de la Memoria/fisiología , Neuronas/fisiología , Memoria Espacial/fisiología , Potenciales de Acción , Animales , Discriminación en Psicología/fisiología , Estimulación Eléctrica , Masculino , Ratas Sprague-Dawley , Factores de Tiempo
20.
J Neurophysiol ; 120(2): 830-838, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29742028

RESUMEN

Cardiac cycle phase is known to modulate processing of simple sensory information. This effect of the heartbeat on brain function is likely exerted via baroreceptors, the neurons sensitive for changes in blood pressure. From baroreceptors, the signal is conveyed all the way to the forebrain and the medial prefrontal cortex. In the two experiments reported, we examined whether learning, as a more complex form of cognition, can be modulated by the cardiac cycle phase. Human participants ( experiment 1) and rabbits ( experiment 2) were trained in trace eyeblink conditioning while neural activity was recorded. The conditioned stimulus was presented contingently with either the systolic or diastolic phase of the cycle. The tone used as the conditioned stimulus evoked amplified responses in both humans (electroencephalogram from "vertex," Cz) and rabbits (hippocampal CA1 local field potential) when its onset was timed at systole. In humans, the cardiac cycle phase did not affect learning, but rabbits trained at diastole learned significantly better than those trained at a random phase of the cardiac cycle. In summary, our results suggest that neural processing of external stimuli and also learning can be affected by targeting stimuli on the basis of cardiac cycle phase. These findings might be useful in applications aimed at maximizing or minimizing the effects of external stimulation. NEW & NOTEWORTHY It has been shown that rapid changes in bodily states modulate neural processing of external stimulus in brain. In this study, we show that modulation of neural processing of external stimulus and learning about it depends on the phase of the cardiac cycle. This is a novel finding that can be applied to optimize associative learning.


Asunto(s)
Aprendizaje por Asociación/fisiología , Encéfalo/fisiología , Región CA1 Hipocampal/fisiología , Condicionamiento Palpebral/fisiología , Potenciales Evocados Auditivos , Contracción Miocárdica , Estimulación Acústica , Adolescente , Adulto , Animales , Electroencefalografía , Femenino , Frecuencia Cardíaca , Humanos , Masculino , Conejos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...