Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 133: 105325, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35839633

RESUMEN

Arteries grow and remodel in response to mechanical stimuli. Hypertension, for example, results in arterial wall thickening. Cell-cell Notch signaling between vascular smooth muscle cells (VSMCs) is known to be involved in this process, but the underlying mechanisms are still unclear. Here, we investigated whether Notch mechanosensitivity to strain may regulate arterial thickening in hypertension. We developed a multiscale computational framework by coupling a finite element model of arterial mechanics, including residual stress, to an agent-based model of mechanosensitive Notch signaling, to predict VSMC phenotypes as an indicator of growth and remodeling. Our simulations revealed that the sensitivity of Notch to strain at mean blood pressure may be a key mediator of arterial thickening in hypertensive arteries. Further simulations showed that loss of residual stress can have synergistic effects with hypertension, and that changes in the expression of Notch receptors, but not Jagged ligands, may be used to control arterial growth and remodeling and to intensify or counteract hypertensive thickening. Overall, we identify Notch mechanosensitivity as a potential mediator of vascular adaptation, and we present a computational framework that can facilitate the testing of new therapeutic and regenerative strategies.


Asunto(s)
Hipertensión , Músculo Liso Vascular , Arterias , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Miocitos del Músculo Liso/fisiología
2.
Front Bioeng Biotechnol ; 9: 641794, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959595

RESUMEN

The orientation of vascular cells can greatly influence the in vivo mechanical properties and functionality of soft vascular tissues. How cell orientation mediates the growth response of cells is of critical importance in understanding the response of soft tissues to mechanical stimuli or injury. To date, considerable evidence has shown that cells align with structural cues such as collagen fibers. However, in the presence of uniaxial cyclic strain on unstructured substrates, cells generally align themselves perpendicularly to the mechanical stimulus, such as strain, a phenomenon known as "strain avoidance." The cellular response to this interplay between structural cues and a mechanical stimulus is poorly understood. A recent in vitro experimental study in our lab has investigated both the individual and collective response of rat aortic smooth muscle cells (RASMC) to structural (collagenous aligned constructs) and mechanical (cyclic strain) cues. In this study, a 2D agent-based model (ABM) is developed to simulate the collective response of RASMC to varying amplitudes of cyclic strain (0-10%, 2-8%, 4-6%) when seeded on unstructured (PDMS) and structured (decellularized collagenous tissue) constructs. An ABM is presented that is fit to the experimental outcomes in terms of cellular alignment and cell growth on PDMS substrates, under cyclic strain amplitudes of (4-6%, 2-8%, 0-10%) at 24 and 72 h timepoints. Furthermore, the ABM can predict RASMC alignment and change in cell number on a structured construct at a cyclic strain amplitude of 0-10% after 10 days. The ABM suggests that strain avoidance behavior observed in cells is dominated by selective cell proliferation and apoptosis at these early time points, as opposed to cell re-orientation, i.e., cells perpendicular to the strain increase their rate of proliferation, whilst the rate of apoptosis simultaneously increases in cells parallel to the strain direction. The development of in-silico modeling platforms, such as that presented here, allow for further understanding of the response of cells to changes in their mechanical environment. Such models offer an efficient and robust means to design and optimize the compliance and topological structure of implantable devices and could be used to aid the design of next-generation vascular grafts and stents.

3.
Ann Biomed Eng ; 49(3): 1022-1032, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33063231

RESUMEN

Bioprosthetic heart valves (BHVs) are implanted in aortic valve stenosis patients to replace the native, dysfunctional valve. Yet, the long-term performance of the glutaraldehyde-fixed bovine pericardium (GLBP) leaflets is known to reduce device durability. The aim of this study was to investigate a type of commercial-grade GLBP which has been over-looked in the literature to date; that of high collagen fibre dispersion (HD). Under uniaxial cyclic loading conditions, it was observed that the fatigue behaviour of HD GLBP was substantially equivalent to GLBP in which the fibres are highly aligned along the loading direction. It was also found that HD GLBP had a statistically significant 9.5% higher collagen content when compared to GLBP with highly aligned collagen fibres. The variability in diseased BHV delivery sites results in unpredictable and complex loading patterns across leaflets in vivo. This study presents the possibility of a shift from the traditional choice of circumferentially aligned GLBP leaflets, to that of high fibre dispersion arrangements. Characterised by its high fatigue life and increased collagen content, in addition to multiple fibre orientations, GLBP of high fibre dispersion may provide better patient outcomes under the multi-directional loading to which BHV leaflets are subjected in vivo.


Asunto(s)
Prótesis Valvulares Cardíacas , Pericardio , Animales , Bovinos , Colágeno , Fijadores , Glutaral , Pericardio/diagnóstico por imagen , Falla de Prótesis , Estrés Mecánico
4.
J Mech Behav Biomed Mater ; 109: 103771, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32347213

RESUMEN

Collagen fibre degradation is a strain-dependent process, whereby the magnitude of experienced strain dictates the rate of enzymatic cleavage. Studies have identified conflicting findings as to whether strain inhibits or enhances collagen degradation, which may be explained by the tissue type and tissue scale investigated, as well as the strain range considered. The aim of this study is to identify, for the first time, the strain-dependent degradation response of intact arterial vessels experiencing physiological pressures and apply these findings to a computational model to better understand degenerative arterial diseases, such as aneurysms. To achieve this, a series of quasi-static pressure inflation experiments were carried out on intact arteries in the presence of purified bacterial collagenase at physiologically relevant pressures to investigate collagen matrix degradation in the vascular wall. A complementary computational model was developed to explore the complex role of pressure, non-collagenous matrix contribution, and collagen fibre crimp in the ultimate degradation response of the vessel. Pressure induced inflation-degradation results identified an increased rate of vessel expansion and reduced time to failure with increasing pressure in the vessels. Interestingly, our computational model was able to capture this same response, including the elevated rates of degradation which occur at low pressures. These findings highlight the critical role of strain in collagen degradation, particularly in cases of arterial disease, such as aneurysm formation, whereby structural integrity may be compromised.


Asunto(s)
Arterias , Colágeno , Colagenasas , Progresión de la Enfermedad , Matriz Extracelular , Humanos
5.
J Mech Behav Biomed Mater ; 103: 103573, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32090902

RESUMEN

Stroke is a major cause of death worldwide. The rupture of atherosclerotic carotid plaques is the leading single cause of stroke. Currently there is no accepted clinical measure to quantitatively assess the risk of carotid plaque rupture. Structural analyses of vulnerable plaques, using finite element (FE) analysis, have retrospectively found that regions of high stress tend to be the site of plaque rupture. The current study proposes a new clinical measure, based on plaque geometry, to assess the risk of carotid plaque rupture. This measure, named the weighted curvature difference, is based on the curvature of both the lumen and intima-media boundary, and the local plaque thickness. A series of idealized and realistic, 2-D and 3-D geometries are used to systematically assess this novel geometrical metric. The areas predicted to be at high risk of rupture using this geometrical metric are compared with areas of high stress, obtained from both isotropic and anisotropic material models. These results are also compared with areas in diseased carotid arteries that are predicted to have high damage accumulation in collagen fibres using a continuum damage model. Results show the new geometrical metric consistently predicts the locations of high stress in all of the vessel geometries examined. The drawbacks of using lumen curvature only as a risk measure are highlighted; particularly in the case of outward remodelled vessels. Weighted curvature difference shows great potential to be used as a metric to efficiently distinguish the rupture prone areas in a diseased vessels in a way that is independent of material properties.


Asunto(s)
Arterias Carótidas , Placa Aterosclerótica , Arterias Carótidas/diagnóstico por imagen , Análisis de Elementos Finitos , Humanos , Modelos Cardiovasculares , Estudios Retrospectivos , Estrés Mecánico
6.
Connect Tissue Res ; 61(2): 174-189, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31495233

RESUMEN

The suitability of a scaffold for tissue engineering is determined by a number of interrelated factors. The biomaterial should be biocompatible and cell instructive, with a porosity and pore interconnectivity that facilitates cellular migration and the transport of nutrients and waste products into and out of the scaffolds. For the engineering of load bearing tissues, the scaffold may also be required to possess specific mechanical properties and/or ensure the transfer of mechanical stimuli to cells to direct their differentiation. Achieving these design goals is challenging, but could potentially be realised by integrating computational tools such as finite element (FE) modelling with three-dimensional (3D) printing techniques to assess how scaffold architecture and material properties influence the performance of the implant. In this study we first use Fused Deposition Modelling (FDM) to modulate the architecture of polycaprolactone (PCL) scaffolds, exploring the influence of varying fibre diameter, spacing and laydown pattern on the structural and mechanical properties of such scaffolds. We next demonstrate that a simple FE modelling strategy, which captures key aspects of the printed scaffold's actual geometry and material behaviour, can be used to accurately model the mechanical characteristics of such scaffolds. We then show the utility of this strategy by using FE modelling to help design 3D printed scaffolds with mechanical properties mimicking that of articular cartilage. In conclusion, this study demonstrates that a relatively simple FE modelling approach can be used to inform the design of 3D printed scaffolds to ensure their bulk mechanical properties mimic specific target tissues.


Asunto(s)
Materiales Biomiméticos/química , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido/química , Análisis de Elementos Finitos
7.
Biomech Model Mechanobiol ; 17(6): 1757-1769, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30058051

RESUMEN

Carotid atherosclerotic plaque rupture is one of the leading causes of stroke. Treatments for atherosclerosis can induce tissue damage during the deployment of an intravascular device or through external tissue clamping during surgery. In this paper, a constituent specific study was performed to investigate the role of the ground matrix and collagen fibres of arterial tissue in response to supra-physiological loads. Cyclic mechanical tests were conducted on intact and collagenase-digested strips of porcine common carotid arteries. Using these tests, four passive damage-relevant phenomena were studied, namely (i) Mullins effect, (ii) hysteresis, (iii) permanent set and (iv) matrix failure and fibre rupture. A constitutive model was also developed to capture all of these damage-relevant phenomena using a continuum damage mechanics approach. The implemented constitutive model was fit to experimental results for both intact and digested samples. The results of this work demonstrate the important role of the ground matrix in the permanent deformation of the arterial tissue under high loads. Supra-physiological load-induced tissue damage may play a key role in vascular remodelling in arteries with atherosclerosis or following interventional procedures.


Asunto(s)
Arterias/fisiología , Arterias Carótidas/patología , Enfermedades de las Arterias Carótidas/fisiopatología , Colagenasas/química , Algoritmos , Animales , Aorta , Fenómenos Biomecánicos , Calibración , Colágeno/química , Elasticidad , Análisis de Elementos Finitos , Ensayo de Materiales , Modelos Cardiovasculares , Estrés Mecánico , Estrés Fisiológico , Porcinos , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA