Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Invest Dermatol ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38570028

RESUMEN

Angiosarcoma is an aggressive soft-tissue sarcoma with a poor prognosis. Chemotherapy for this cancer typically employs paclitaxel, a taxane (genotoxic drug), although it has a limited effect owing to chemoresistance to prolonged treatment. In this study, we examine an alternative angiosarcoma treatment approach that combines chemotherapeutic and senolytic agents. We find that the chemotherapeutic drugs cisplatin and paclitaxel efficiently induce senescence in angiosarcoma cells. Subsequent treatment with the senolytic agent ABT-263 eliminates senescent cells by activating the apoptotic pathway. In addition, expression analysis indicates that senescence-associated secretory phenotype genes are activated in senescent angiosarcoma cells and that ABT-263 treatment downregulates IFN-I pathway genes in senescent cells. Moreover, we show that cisplatin treatment alone requires high doses to remove angiosarcoma cells. In contrast, lower doses of cisplatin are sufficient to induce senescence, followed by the elimination of senescent cells by the senolytic treatment. This study sheds light on a potential therapeutic strategy against angiosarcoma by combining a relatively low dose of cisplatin with the ABT-263 senolytic agent, which can help ease the deleterious side effects of chemotherapy.

2.
J Biochem ; 175(5): 525-537, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38366629

RESUMEN

Cellular senescence occurs in response to endogenous or exogenous stresses and is characterized by stable cell cycle arrest, alterations in nuclear morphology and secretion of proinflammatory factors, referred to as the senescence-associated secretory phenotype (SASP). An increase of senescent cells is associated with the development of several types of cancer and aging-related diseases. Therefore, senolytic agents that selectively remove senescent cells may offer opportunities for developing new therapeutic strategies against such cancers and aging-related diseases. This review outlines senescence inducers and the general characteristics of senescent cells. We also discuss the involvement of senescent cells in certain cancers and diseases. Finally, we describe a series of senolytic agents and their utilization in therapeutic strategies.


Asunto(s)
Senescencia Celular , Neoplasias , Animales , Humanos , Envejecimiento/metabolismo , Senescencia Celular/efectos de los fármacos , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Fenotipo Secretor Asociado a la Senescencia , Senoterapéuticos/uso terapéutico
3.
Mol Cell ; 83(21): 3787-3800.e9, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37820734

RESUMEN

Condensin is a structural maintenance of chromosomes (SMC) complex family member thought to build mitotic chromosomes by DNA loop extrusion. However, condensin variants unable to extrude loops, yet proficient in chromosome formation, were recently described. Here, we explore how condensin might alternatively build chromosomes. Using bulk biochemical and single-molecule experiments with purified fission yeast condensin, we observe that individual condensins sequentially and topologically entrap two double-stranded DNAs (dsDNAs). Condensin loading transitions through a state requiring DNA bending, as proposed for the related cohesin complex. While cohesin then favors the capture of a second single-stranded DNA (ssDNA), second dsDNA capture emerges as a defining feature of condensin. We provide complementary in vivo evidence for DNA-DNA capture in the form of condensin-dependent chromatin contacts within, as well as between, chromosomes. Our results support a "diffusion capture" model in which condensin acts in mitotic chromosome formation by sequential dsDNA-dsDNA capture.


Asunto(s)
Proteínas de Unión al ADN , Schizosaccharomyces , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/química , ADN/genética , Cromosomas , Proteínas de Ciclo Celular/genética , Schizosaccharomyces/genética , Mitosis
4.
Nucleic Acids Res ; 50(7): 3799-3816, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35333350

RESUMEN

During meiotic prophase, cohesin-dependent axial structures are formed in the synaptonemal complex (SC). However, the functional correlation between these structures and cohesion remains elusive. Here, we examined the formation of cohesin-dependent axial structures in the fission yeast Schizosaccharomyces pombe. This organism forms atypical SCs composed of linear elements (LinEs) resembling the lateral elements of SC but lacking the transverse filaments. Hi-C analysis using a highly synchronous population of meiotic S. pombe cells revealed that the axis-loop chromatin structure formed in meiotic prophase was dependent on the Rec8 cohesin complex. In contrast, the Rec8-mediated formation of the axis-loop structure occurred in cells lacking components of LinEs. To dissect the functions of Rec8, we identified a rec8-F204S mutant that lost the ability to assemble the axis-loop structure without losing cohesion of sister chromatids. This mutant showed defects in the formation of the axis-loop structure and LinE assembly and thus exhibited reduced meiotic recombination. Collectively, our results demonstrate that the Rec8-dependent axis-loop structure provides a structural platform essential for LinE assembly, facilitating meiotic recombination of homologous chromosomes, independently of its role in sister chromatid cohesion.


Asunto(s)
Meiosis , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular , Cromatina , Proteínas Cromosómicas no Histona , Fosfoproteínas/genética , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Complejo Sinaptonémico , Cohesinas
5.
Nat Commun ; 11(1): 877, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054837

RESUMEN

Epstein-Barr virus (EBV) genomes persist in latently infected cells as extrachromosomal episomes that attach to host chromosomes through the tethering functions of EBNA1, a viral encoded sequence-specific DNA binding protein. Here we employ circular chromosome conformation capture (4C) analysis to identify genome-wide associations between EBV episomes and host chromosomes. We find that EBV episomes in Burkitt's lymphoma cells preferentially associate with cellular genomic sites containing EBNA1 binding sites enriched with B-cell factors EBF1 and RBP-jK, the repressive histone mark H3K9me3, and AT-rich flanking sequence. These attachment sites correspond to transcriptionally silenced genes with GO enrichment for neuronal function and protein kinase A pathways. Depletion of EBNA1 leads to a transcriptional de-repression of silenced genes and reduction in H3K9me3. EBV attachment sites in lymphoblastoid cells with different latency type show different correlations, suggesting that host chromosome attachment sites are functionally linked to latency type gene expression programs.


Asunto(s)
Sitios de Ligazón Microbiológica/genética , Sitios de Ligazón Microbiológica/fisiología , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiología , Interacciones Microbiota-Huesped/genética , Linfoma de Burkitt/genética , Linfoma de Burkitt/virología , Línea Celular Tumoral , Cromosomas Humanos/genética , Cromosomas Humanos/virología , Epigénesis Genética , Antígenos Nucleares del Virus de Epstein-Barr/fisiología , Herpesvirus Humano 4/patogenicidad , Interacciones Microbiota-Huesped/fisiología , Humanos , Modelos Biológicos , Plásmidos/genética , Latencia del Virus/genética , Latencia del Virus/fisiología
6.
Nat Commun ; 10(1): 5688, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31831736

RESUMEN

Senescence is induced by various stimuli such as oncogene expression and telomere shortening, referred to as oncogene-induced senescence (OIS) and replicative senescence (RS), respectively, and accompanied by global transcriptional alterations and 3D genome reorganization. Here, we demonstrate that the human condensin II complex participates in senescence via gene regulation and reorganization of euchromatic A and heterochromatic B compartments. Both OIS and RS are accompanied by A-to-B and B-to-A compartmental transitions, the latter of which occur more frequently and are undergone by 14% (430 Mb) of the human genome. Mechanistically, condensin is enriched in A compartments and implicated in B-to-A transitions. The full activation of senescence genes (SASP genes and p53 targets) requires condensin; its depletion impairs senescence markers. This study describes that condensin reinforces euchromatic A compartments and promotes B-to-A transitions, both of which are coupled to optimal expression of senescence genes, thereby allowing condensin to contribute to senescent processes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/farmacología , Senescencia Celular/genética , Senescencia Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/farmacología , Proteínas de Ciclo Celular/genética , Línea Celular , Cromatina , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genómica , Humanos , Proteínas Nucleares/genética , Oncogenes , Regiones Promotoras Genéticas , Acortamiento del Telómero , Proteína p53 Supresora de Tumor/genética
7.
Sci Adv ; 5(5): eaaw5294, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31131328

RESUMEN

ARID1A, a subunit of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex, localizes to both promoters and enhancers to influence transcription. However, the role of ARID1A in higher-order spatial chromosome partitioning and genome organization is unknown. Here, we show that ARID1A spatially partitions interphase chromosomes and regulates higher-order genome organization. The SWI/SNF complex interacts with condensin II, and they display significant colocalizations at enhancers. ARID1A knockout drives the redistribution of condensin II preferentially at enhancers, which positively correlates with changes in transcription. ARID1A and condensin II contribute to transcriptionally inactive B-compartment formation, while ARID1A weakens the border strength of topologically associated domains. Condensin II redistribution induced by ARID1A knockout positively correlates with chromosome sizes, which negatively correlates with interchromosomal interactions. ARID1A loss increases the trans interactions of small chromosomes, which was validated by three-dimensional interphase chromosome painting. These results demonstrate that ARID1A is important for large-scale genome folding and spatially partitions interphase chromosomes.


Asunto(s)
Cromosomas/ultraestructura , Proteínas de Unión al ADN/fisiología , Interfase/genética , Factores de Transcripción/fisiología , Adenosina Trifosfatasas/química , Sitios de Unión , Línea Celular Tumoral , Cromatina/química , Análisis por Conglomerados , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Humanos , Complejos Multiproteicos/química , Regiones Promotoras Genéticas , Unión Proteica , RNA-Seq , Serina Endopeptidasas/química , Factores de Transcripción/genética
8.
Nat Cell Biol ; 21(3): 397-407, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30778219

RESUMEN

Cellular senescence is a stable growth arrest that is implicated in tissue ageing and cancer. Senescent cells are characterized by an upregulation of proinflammatory cytokines, which is termed the senescence-associated secretory phenotype (SASP). NAD+ metabolism influences both tissue ageing and cancer. However, the role of NAD+ metabolism in regulating the SASP is poorly understood. Here, we show that nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the NAD+ salvage pathway, governs the proinflammatory SASP independent of senescence-associated growth arrest. NAMPT expression is regulated by high mobility group A (HMGA) proteins during senescence. The HMGA-NAMPT-NAD+ signalling axis promotes the proinflammatory SASP by enhancing glycolysis and mitochondrial respiration. HMGA proteins and NAMPT promote the proinflammatory SASP through NAD+-mediated suppression of AMPK kinase, which suppresses the p53-mediated inhibition of p38 MAPK to enhance NF-κB activity. We conclude that NAD+ metabolism governs the proinflammatory SASP. Given the tumour-promoting effects of the proinflammatory SASP, our results suggest that anti-ageing dietary NAD+ augmentation should be administered with precision.


Asunto(s)
Senescencia Celular , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , NAD/metabolismo , Animales , Línea Celular , Citocinas/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Fenotipo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Nat Struct Mol Biol ; 24(11): 965-976, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28991264

RESUMEN

Eukaryotic genomes are highly ordered through various mechanisms, including topologically associating domain (TAD) organization. We employed an in situ Hi-C approach to follow the 3D organization of the fission yeast genome during the cell cycle. We demonstrate that during mitosis, large domains of 300 kb-1 Mb are formed by condensin. This mitotic domain organization does not suddenly dissolve, but gradually diminishes until the next mitosis. By contrast, small domains of 30-40 kb that are formed by cohesin are relatively stable across the cell cycle. Condensin and cohesin mediate long- and short-range contacts, respectively, by bridging their binding sites, thereby forming the large and small domains. These domains are inversely regulated during the cell cycle but assemble independently. Our study describes the chromosomal oscillation between the formation and decay phases of the large and small domains, and we predict that the condensin-mediated domains serve as chromosomal compaction units.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Cromosomas Fúngicos/ultraestructura , Genoma Fúngico , Mitosis , Schizosaccharomyces/citología , Schizosaccharomyces/fisiología , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Complejos Multiproteicos/metabolismo , Cohesinas
10.
Annu Rev Genet ; 51: 23-44, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28853923

RESUMEN

The three-dimensional (3D) genome structure is highly ordered by a hierarchy of organizing events ranging from enhancer-promoter or gene-gene contacts to chromosomal territorial arrangement. It is becoming clear that the cohesin and condensin complexes are key molecular machines that organize the 3D genome structure. These complexes are highly conserved from simple systems, e.g., yeast cells, to the much more complex human system. Therefore, knowledge from the budding and fission yeast systems illuminates highly conserved molecular mechanisms of how cohesin and condensin establish the functional 3D genome structures. Here I discuss how these complexes are recruited across the yeast genomes, mediate distinct genome-organizing events such as gene contacts and topological domain formation, and participate in important nuclear activities including transcriptional regulation and chromosomal dynamics.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Complejos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/ultraestructura , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/química , Cromosomas Fúngicos/ultraestructura , Secuencia Conservada , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Complejos Multiproteicos/metabolismo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestructura , Transcripción Genética , Cohesinas
11.
J Cell Biol ; 215(3): 325-334, 2016 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-27799366

RESUMEN

Cellular senescence is a stable cell growth arrest that is characterized by the silencing of proliferation-promoting genes through compaction of chromosomes into senescence-associated heterochromatin foci (SAHF). Paradoxically, senescence is also accompanied by increased transcription of certain genes encoding for secreted factors such as cytokines and chemokines, known as the senescence-associated secretory phenotype (SASP). How SASP genes are excluded from SAHF-mediated global gene silencing remains unclear. In this study, we report that high mobility group box 2 (HMGB2) orchestrates the chromatin landscape of SASP gene loci. HMGB2 preferentially localizes to SASP gene loci during senescence. Loss of HMGB2 during senescence blunts SASP gene expression by allowing for spreading of repressive heterochromatin into SASP gene loci. This correlates with incorporation of SASP gene loci into SAHF. Our results establish HMGB2 as a novel master regulator that orchestrates SASP through prevention of heterochromatin spreading to allow for exclusion of SASP gene loci from a global heterochromatin environment during senescence.


Asunto(s)
Senescencia Celular , Cromatina/metabolismo , Sitios Genéticos , Proteína HMGB2/metabolismo , Vías Secretoras , Puntos de Control del Ciclo Celular/genética , Línea Celular , Senescencia Celular/genética , Regulación de la Expresión Génica , Heterocromatina/metabolismo , Humanos , Fenotipo , Unión Proteica , Vías Secretoras/genética
12.
Nat Genet ; 48(10): 1242-52, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27548313

RESUMEN

It is becoming clear that structural-maintenance-of-chromosomes (SMC) complexes such as condensin and cohesin are involved in three-dimensional genome organization, yet their exact roles in functional organization remain unclear. We used chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) to comprehensively identify genome-wide associations mediated by condensin and cohesin in fission yeast. We found that although cohesin and condensin often bind to the same loci, they direct different association networks and generate small and larger chromatin domains, respectively. Cohesin mediates associations between loci positioned within 100 kb of each other; condensin can drive longer-range associations. Moreover, condensin, but not cohesin, connects cell cycle-regulated genes bound by mitotic transcription factors. This study describes the different functions of condensin and cohesin in genome organization and how specific transcription factors function in condensin loading, cell cycle-dependent genome organization and mitotic chromosome organization to support faithful chromosome segregation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas Fúngicos , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción GATA/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Factores de Transcripción/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Genes Fúngicos , Genes cdc , Mitosis , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Dominios Proteicos , Schizosaccharomyces/metabolismo , Cohesinas
13.
Curr Genet ; 62(4): 739-743, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27061734

RESUMEN

Genome/chromosome structures are formed by a hierarchy of organizing processes ranging from gene interactions to chromosome territory formation. The SMC complex, cohesin, mediates interactions among enhancers and promoters, thereby regulating transcription. Another SMC complex, condensin, also plays critical roles in genome organization, although the detailed mechanisms remain much less well understood. Here, we discuss our recent findings on how fission yeast condensin mediates interactions among genes and how condensin-dependent interactions play dual roles in the chromosome territory arrangement during interphase and in mitotic chromosome organization, which supports the fidelity of chromosome segregation. Our studies suggest that condensin serves as a functional ligature connecting gene interactions, chromosome territory arrangement, transcriptional regulation, and chromosome segregation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Segregación Cromosómica , Regulación Fúngica de la Expresión Génica , Mitosis , Unión Proteica , Transporte de Proteínas , Proteína de Unión a TATA-Box/metabolismo , Transcripción Genética
14.
PLoS Genet ; 12(3): e1005943, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26990647

RESUMEN

Genomic instability associated with DNA replication stress is linked to cancer and genetic pathologies in humans. If not properly regulated, replication stress, such as fork stalling and collapse, can be induced at natural replication impediments present throughout the genome. The fork protection complex (FPC) is thought to play a critical role in stabilizing stalled replication forks at several known replication barriers including eukaryotic rDNA genes and the fission yeast mating-type locus. However, little is known about the role of the FPC at other natural impediments including telomeres. Telomeres are considered to be difficult to replicate due to the presence of repetitive GT-rich sequences and telomere-binding proteins. However, the regulatory mechanism that ensures telomere replication is not fully understood. Here, we report the role of the fission yeast Swi1(Timeless), a subunit of the FPC, in telomere replication. Loss of Swi1 causes telomere shortening in a telomerase-independent manner. Our epistasis analyses suggest that heterochromatin and telomere-binding proteins are not major impediments for telomere replication in the absence of Swi1. Instead, repetitive DNA sequences impair telomere integrity in swi1Δ mutant cells, leading to the loss of repeat DNA. In the absence of Swi1, telomere shortening is accompanied with an increased recruitment of Rad52 recombinase and more frequent amplification of telomere/subtelomeres, reminiscent of tumor cells that utilize the alternative lengthening of telomeres pathway (ALT) to maintain telomeres. These results suggest that Swi1 ensures telomere replication by suppressing recombination and repeat instability at telomeres. Our studies may also be relevant in understanding the potential role of Swi1(Timeless) in regulation of telomere stability in cancer cells.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Inestabilidad de Microsatélites , Secuencias Repetitivas de Ácidos Nucleicos/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Unión a Telómeros/genética , Replicación del ADN/genética , Inestabilidad Genómica , Heterocromatina/genética , Humanos , Proteína Recombinante y Reparadora de ADN Rad52/genética , Schizosaccharomyces/genética , Telómero/genética , Homeostasis del Telómero , Acortamiento del Telómero/genética
15.
Nucleic Acids Res ; 44(8): 3618-28, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-26704981

RESUMEN

Chromosomes are not randomly disposed in the nucleus but instead occupy discrete sub-nuclear domains, referred to as chromosome territories. The molecular mechanisms that underlie the formation of chromosome territories and how they are regulated during the cell cycle remain largely unknown. Here, we have developed two different chromosome-painting approaches to address how chromosome territories are organized in the fission yeast model organism. We show that condensin frequently associates RNA polymerase III-transcribed genes (tRNA and 5S rRNA) that are present on the same chromosomes, and that the disruption of these associations by condensin mutations significantly compromises the chromosome territory arrangement. We also find that condensin-dependent intra-chromosomal gene associations and chromosome territories are co-regulated during the cell cycle. For example, condensin-directed gene associations occur to the least degree during S phase, with the chromosomal overlap becoming largest. In clear contrast, condensin-directed gene associations become tighter in other cell-cycle phases, especially during mitosis, with the overlap between the different chromosomes being smaller. This study suggests that condensin-driven intra-chromosomal gene associations contribute to the organization and regulation of chromosome territories during the cell cycle.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ciclo Celular/genética , Posicionamiento de Cromosoma , Cromosomas Fúngicos , Proteínas de Unión al ADN/metabolismo , Genes Fúngicos , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/genética , Centrómero , Pintura Cromosómica , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Mutación , ARN Polimerasa III , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
16.
Mol Cell ; 59(5): 755-67, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26257282

RESUMEN

Genome/chromosome organization is highly ordered and controls various nuclear events, although the molecular mechanisms underlying the functional organization remain largely unknown. Here, we show that the TATA box-binding protein (TBP) interacts with the Cnd2 kleisin subunit of condensin to mediate interphase and mitotic chromosomal organization in fission yeast. TBP recruits condensin onto RNA polymerase III-transcribed (Pol III) genes and highly transcribed Pol II genes; condensin in turn associates these genes with centromeres. Inhibition of the Cnd2-TBP interaction disrupts condensin localization across the genome and the proper assembly of mitotic chromosomes, leading to severe defects in chromosome segregation and eventually causing cellular lethality. We propose that the Cnd2-TBP interaction coordinates transcription with chromosomal architecture by linking dispersed gene loci with centromeres. This chromosome arrangement can contribute to the efficient transmission of physical force at the kinetochore to chromosomal arms, thereby supporting the fidelity of chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/química , Centrómero/genética , Centrómero/metabolismo , Segregación Cromosómica , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Fúngicos , Mitosis , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación Puntual , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/química , Proteína de Unión a TATA-Box/química
17.
Cell Cycle ; 14(13): 2160-70, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26017022

RESUMEN

Although cellular senescence is accompanied by global alterations in genome architecture, how the genome is restructured during the senescent processes is not well understood. Here, we show that the hCAP-H2 subunit of the condensin II complex exists as either a full-length protein or an N-terminus truncated variant (ΔN). While the full-length hCAP-H2 associates with mitotic chromosomes, the ΔN variant exists as an insoluble nuclear structure. When overexpressed, both hCAP-H2 isoforms assemble this nuclear architecture and induce senescence-associated heterochromatic foci (SAHF). The hCAP-H2ΔN protein accumulates as cells approach senescence, and hCAP-H2 knockdown inhibits oncogene-induced senescence. This study identifies a novel mechanism whereby condensin drives senescence via nuclear/genomic reorganization.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Senescencia Celular/fisiología , Proteínas de Unión al ADN/fisiología , Complejos Multiproteicos/fisiología , Serina Endopeptidasas/fisiología , Secuencia de Bases , Células HCT116 , Células HeLa , Humanos , Datos de Secuencia Molecular
18.
Methods Mol Biol ; 1300: 169-86, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25916713

RESUMEN

DNA replication is tightly coupled with DNA repair processes in order to preserve genomic integrity. During DNA replication, the replication fork encounters a variety of obstacles including DNA damage/adducts, secondary structures, and programmed fork-blocking sites, which are all difficult to replicate. The replication fork also collides with the transcription machinery, which shares the template DNA with the replisome complex. Under these conditions, replication forks stall, causing replication stress and/or fork collapse, ultimately leading to genomic instability. The mechanisms to overcome these replication problems remain elusive. Therefore, it is important to investigate how DNA repair and replication factors are recruited and coordinated at chromosomal regions that are difficult to replicate. In this chapter, we describe a chromatin immunoprecipitation method to locate proteins required for DNA repair during DNA replication in the fission yeast Schizosaccharomyces pombe. This method can also easily be adapted to study replisome components or chromatin-associated factors.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Reparación del ADN , Replicación del ADN , Proteínas de Schizosaccharomyces pombe/metabolismo , Anticuerpos/farmacología , Ciclo Celular , Extractos Celulares , Reactivos de Enlaces Cruzados/farmacología , Inestabilidad Genómica , Reacción en Cadena en Tiempo Real de la Polimerasa , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética
19.
Biotechniques ; 55(5): 257-63, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24215641

RESUMEN

We describe a series of new vectors for PCR-based epitope tagging and gene disruption in the fission yeast Schizosaccharomyces pombe, an exceptional model organism for the study of cellular processes. The vectors are designed for amplification of gene-targeting DNA cassettes and integration into specific genetic loci, allowing expression of proteins fused to 12 tandem copies of the Pk (V5) epitope or 5 tandem copies of the FLAG epitope with a glycine linker. These vectors are available with various antibiotic or nutritional markers and are useful for protein studies using biochemical and cell biological methods. We also describe new vectors for fluorescent protein-tagging and gene disruption using ura4MX6, LEU2MX6, and his3MX6 selection markers, allowing researchers in the S. pombe community to disrupt genes and manipulate genomic loci using primer sets already available for the widely used pFA6a-MX6 system. Our new vectors may also be useful for gene manipulation in Saccharomyces cerevisiae.


Asunto(s)
ADN de Hongos/genética , Epítopos/genética , Marcación de Gen/métodos , Vectores Genéticos/genética , Schizosaccharomyces/genética , Eliminación de Gen , Reacción en Cadena de la Polimerasa/métodos
20.
J Cell Sci ; 126(Pt 22): 5271-83, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23986481

RESUMEN

Dispersed genetic elements, such as retrotransposons and Pol-III-transcribed genes, including tRNA and 5S rRNA, cluster and associate with centromeres in fission yeast through the function of condensin. However, the dynamics of these condensin-mediated genomic associations remains unknown. We have examined the 3D motions of genomic loci including the centromere, telomere, rDNA repeat locus, and the loci carrying Pol-III-transcribed genes or long-terminal repeat (LTR) retrotransposons in live cells at as short as 1.5-second intervals. Treatment with carbendazim (CBZ), a microtubule-destabilizing agent, not only prevents centromeric motion, but also reduces the mobility of the other genomic loci during interphase. Further analyses demonstrate that condensin-mediated associations between centromeres and the genomic loci are clonal, infrequent and transient. However, when associated, centromeres and the genomic loci migrate together in a coordinated fashion. In addition, a condensin mutation that disrupts associations between centromeres and the genomic loci results in a concomitant decrease in the mobility of the loci. Our study suggests that highly mobile centromeres pulled by microtubules in cytoplasm serve as 'genome mobility elements' by facilitating physical relocations of associating genomic regions.


Asunto(s)
Centrómero/genética , Interfase/genética , Mitosis/genética , Schizosaccharomyces/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/ultraestructura , Bencimidazoles/farmacología , Carbamatos/farmacología , ADN Ribosómico/genética , ADN Ribosómico/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Genoma Fúngico , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , Mitosis/efectos de los fármacos , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , ARN Ribosómico 5S/genética , ARN Ribosómico 5S/ultraestructura , ARN de Transferencia/genética , ARN de Transferencia/ultraestructura , Retroelementos/genética , Schizosaccharomyces/citología , Telómero/genética , Telómero/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...