Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35588412

RESUMEN

Soft actor-critic (SAC) is an off-policy actor-critic (AC) reinforcement learning (RL) algorithm, essentially based on entropy regularization. SAC trains a policy by maximizing the trade-off between expected return and entropy (randomness in the policy). It has achieved the state-of-the-art performance on a range of continuous control benchmark tasks, outperforming prior on-policy and off-policy methods. SAC works in an off-policy fashion where data are sampled uniformly from past experiences (stored in a buffer) using which the parameters of the policy and value function networks are updated. We propose certain crucial modifications for boosting the performance of SAC and making it more sample efficient. In our proposed improved SAC (ISAC), we first introduce a new prioritization scheme for selecting better samples from the experience replay (ER) buffer. Second we use a mixture of the prioritized off-policy data with the latest on-policy data for training the policy and value function networks. We compare our approach with the vanilla SAC and some recent variants of SAC and show that our approach outperforms the said algorithmic benchmarks. It is comparatively more stable and sample efficient when tested on a number of continuous control tasks in MuJoCo environments.

2.
PLoS One ; 11(12): e0167162, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27907045

RESUMEN

A robust cellular counter could enable synthetic biologists to design complex circuits with diverse behaviors. The existing synthetic-biological counters, responsive to the beginning of the pulse, are sensitive to the pulse duration. Here we present a pulse detecting circuit that responds only at the falling edge of a pulse-analogous to negative edge triggered electric circuits. As biological events do not follow precise timing, use of such a pulse detector would enable the design of robust asynchronous counters which can count the completion of events. This transcription-based pulse detecting circuit depends on the interaction of two co-expressed lambdoid phage-derived proteins: the first is unstable and inhibits the regulatory activity of the second, stable protein. At the end of the pulse the unstable inhibitor protein disappears from the cell and the second protein triggers the recording of the event completion. Using stochastic simulation we showed that the proposed design can detect the completion of the pulse irrespective to the pulse duration. In our simulation we also showed that fusing the pulse detector with a phage lambda memory element we can construct a counter which can be extended to count larger numbers. The proposed design principle is a new control mechanism for synthetic biology which can be integrated in different circuits for identifying the completion of an event.


Asunto(s)
Técnicas Biosensibles , Redes Reguladoras de Genes , Modelos Genéticos , Biología Sintética/métodos , Bacteriófago lambda/fisiología , Expresión Génica , Regulación de la Expresión Génica , Genes Reporteros
3.
PLoS One ; 11(1): e0146116, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26764911

RESUMEN

Classification of datasets with imbalanced sample distributions has always been a challenge. In general, a popular approach for enhancing classification performance is the construction of an ensemble of classifiers. However, the performance of an ensemble is dependent on the choice of constituent base classifiers. Therefore, we propose a genetic algorithm-based search method for finding the optimum combination from a pool of base classifiers to form a heterogeneous ensemble. The algorithm, called GA-EoC, utilises 10 fold-cross validation on training data for evaluating the quality of each candidate ensembles. In order to combine the base classifiers decision into ensemble's output, we used the simple and widely used majority voting approach. The proposed algorithm, along with the random sub-sampling approach to balance the class distribution, has been used for classifying class-imbalanced datasets. Additionally, if a feature set was not available, we used the (α, ß) - k Feature Set method to select a better subset of features for classification. We have tested GA-EoC with three benchmarking datasets from the UCI-Machine Learning repository, one Alzheimer's disease dataset and a subset of the PubFig database of Columbia University. In general, the performance of the proposed method on the chosen datasets is robust and better than that of the constituent base classifiers and many other well-known ensembles. Based on our empirical study we claim that a genetic algorithm is a superior and reliable approach to heterogeneous ensemble construction and we expect that the proposed GA-EoC would perform consistently in other cases.


Asunto(s)
Algoritmos , Modelos Teóricos
4.
PLoS One ; 10(1): e0116258, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25616055

RESUMEN

Design and implementation of robust network modules is essential for construction of complex biological systems through hierarchical assembly of 'parts' and 'devices'. The robustness of gene regulatory networks (GRNs) is ascribed chiefly to the underlying topology. The automatic designing capability of GRN topology that can exhibit robust behavior can dramatically change the current practice in synthetic biology. A recent study shows that Darwinian evolution can gradually develop higher topological robustness. Subsequently, this work presents an evolutionary algorithm that simulates natural evolution in silico, for identifying network topologies that are robust to perturbations. We present a Monte Carlo based method for quantifying topological robustness and designed a fitness approximation approach for efficient calculation of topological robustness which is computationally very intensive. The proposed framework was verified using two classic GRN behaviors: oscillation and bistability, although the framework is generalized for evolving other types of responses. The algorithm identified robust GRN architectures which were verified using different analysis and comparison. Analysis of the results also shed light on the relationship among robustness, cooperativity and complexity. This study also shows that nature has already evolved very robust architectures for its crucial systems; hence simulation of this natural process can be very valuable for designing robust biological systems.


Asunto(s)
Biología Computacional/métodos , Redes Reguladoras de Genes , Algoritmos , Modelos Genéticos , Método de Montecarlo , Selección Genética
5.
Algorithms Mol Biol ; 6: 19, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21711543

RESUMEN

BACKGROUND: With an increasing number of plant genome sequences, it has become important to develop a robust computational method for detecting plant promoters. Although a wide variety of programs are currently available, prediction accuracy of these still requires further improvement. The limitations of these methods can be addressed by selecting appropriate features for distinguishing promoters and non-promoters. METHODS: In this study, we proposed two feature selection approaches based on hexamer sequences: the Frequency Distribution Analyzed Feature Selection Algorithm (FDAFSA) and the Random Triplet Pair Feature Selecting Genetic Algorithm (RTPFSGA). In FDAFSA, adjacent triplet-pairs (hexamer sequences) were selected based on the difference in the frequency of hexamers between promoters and non-promoters. In RTPFSGA, random triplet-pairs (RTPs) were selected by exploiting a genetic algorithm that distinguishes frequencies of non-adjacent triplet pairs between promoters and non-promoters. Then, a support vector machine (SVM), a nonlinear machine-learning algorithm, was used to classify promoters and non-promoters by combining these two feature selection approaches. We referred to this novel algorithm as PromoBot. RESULTS: Promoter sequences were collected from the PlantProm database. Non-promoter sequences were collected from plant mRNA, rRNA, and tRNA of PlantGDB and plant miRNA of miRBase. Then, in order to validate the proposed algorithm, we applied a 5-fold cross validation test. Training data sets were used to select features based on FDAFSA and RTPFSGA, and these features were used to train the SVM. We achieved 89% sensitivity and 86% specificity. CONCLUSIONS: We compared our PromoBot algorithm to five other algorithms. It was found that the sensitivity and specificity of PromoBot performed well (or even better) with the algorithms tested. These results show that the two proposed feature selection methods based on hexamer frequencies and random triplet-pair could be successfully incorporated into a supervised machine learning method in promoter classification problem. As such, we expect that PromoBot can be used to help identify new plant promoters. Source codes and analysis results of this work could be provided upon request.

6.
BMC Bioinformatics ; 11: 273, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20492656

RESUMEN

BACKGROUND: Most of the existing in silico phosphorylation site prediction systems use machine learning approach that requires preparing a good set of classification data in order to build the classification knowledge. Furthermore, phosphorylation is catalyzed by kinase enzymes and hence the kinase information of the phosphorylated sites has been used as major classification data in most of the existing systems. Since the number of kinase annotations in protein sequences is far less than that of the proteins being sequenced to date, the prediction systems that use the information found from the small clique of kinase annotated proteins can not be considered as completely perfect for predicting outside the clique. Hence the systems are certainly not generalized. In this paper, a novel generalized prediction system, PPRED (Phosphorylation PREDictor) is proposed that ignores the kinase information and only uses the evolutionary information of proteins for classifying phosphorylation sites. RESULTS: Experimental results based on cross validations and an independent benchmark reveal the significance of using the evolutionary information alone to classify phosphorylation sites from protein sequences. The prediction performance of the proposed system is better than those of the existing prediction systems that also do not incorporate kinase information. The system is also comparable to systems that incorporate kinase information in predicting such sites. CONCLUSIONS: The approach presented in this paper provides an efficient way to identify phosphorylation sites in a given protein primary sequence that would be a valuable information for the molecular biologists working on protein phosphorylation sites and for bioinformaticians developing generalized prediction systems for the post translational modifications like phosphorylation or glycosylation. PPRED is publicly available at the URL http://www.cse.univdhaka.edu/~ashis/ppred/index.php.


Asunto(s)
Inteligencia Artificial , Proteínas/química , Proteínas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Bases de Datos de Proteínas , Fosforilación , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Análisis de Secuencia de Proteína , Programas Informáticos
7.
BMC Bioinformatics ; 11 Suppl 1: S56, 2010 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-20122231

RESUMEN

BACKGROUND: Gene regulatory network is an abstract mapping of gene regulations in living cells that can help to predict the system behavior of living organisms. Such prediction capability can potentially lead to the development of improved diagnostic tests and therapeutics. DNA microarrays, which measure the expression level of thousands of genes in parallel, constitute the numeric seed for the inference of gene regulatory networks. In this paper, we have proposed a new approach for inferring gene regulatory networks from time-series gene expression data using linear time-variant model. Here, Self-Adaptive Differential Evolution, a versatile and robust Evolutionary Algorithm, is used as the learning paradigm. RESULTS: To assess the potency of the proposed work, a well known nonlinear synthetic network has been used. The reconstruction method has inferred this synthetic network topology and the associated regulatory parameters with high accuracy from both the noise-free and noisy time-series data. For validation purposes, the proposed approach is also applied to the simulated expression dataset of cAMP oscillations in Dictyostelium discoideum and has proved it's strength in finding the correct regulations. The strength of this work has also been verified by analyzing the real expression dataset of SOS DNA repair system in Escherichia coli and it has succeeded in finding more correct and reasonable regulations as compared to various existing works. CONCLUSION: By the proposed approach, the gene interaction networks have been inferred in an efficient manner from both the synthetic, simulated cAMP oscillation expression data and real expression data. The computational time of this approach is also considerably smaller, which makes it to be more suitable for larger network reconstruction. Thus the proposed approach can serve as an initiate for the future researches regarding the associated area.


Asunto(s)
Redes Reguladoras de Genes , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , AMP Cíclico/metabolismo , Dictyostelium/genética , Dictyostelium/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Perfilación de la Expresión Génica/métodos
8.
Artículo en Inglés | MEDLINE | ID: mdl-17975274

RESUMEN

We present a memetic algorithm for evolving the structure of biomolecular interactions and inferring the effective kinetic parameters from the time series data of gene expression using the decoupled Ssystem formalism. We propose an Information Criteria based fitness evaluation for gene network model selection instead of the conventional Mean Squared Error (MSE) based fitness evaluation. A hill-climbing local-search method has been incorporated in our evolutionary algorithm for efficiently attaining the skeletal architecture which is most frequently observed in biological networks. The suitability of the method is tested in gene circuit reconstruction experiments, varying the network dimension and/or characteristics, the amount of gene expression data used for inference and the noise level present in expression profiles. The reconstruction method inferred the network topology and the regulatory parameters with high accuracy. Nevertheless, the performance is limited to the amount of expression data used and the noise level present in the data. The proposed fitness function has been found more suitable for identifying correct network topology and for estimating the accurate parameter values compared to the existing ones. Finally, we applied the methodology for analyzing the cell-cycle gene expression data of budding yeast and reconstructed the network of some key regulators.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Algoritmos , Inteligencia Artificial , Huesos/metabolismo , Evolución Molecular , Redes Reguladoras de Genes , Genes Fúngicos , Modelos Genéticos , Modelos Estadísticos , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
9.
Genome Inform ; 16(2): 205-14, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16901103

RESUMEN

This paper proposes an improved evolutionary method for constructing the underlying network structure and inferring effective kinetic parameters from the time series data of gene expression using decoupled S-system formalism. We employed Trigonometric Differential Evolution (TDE) as the optimization engine of our algorithm for capturing the dynamics in gene expression data. A more effective fitness function for attaining the sparse structure, which is the hallmark of biological networks, has been applied. Experiments on artificial genetic network show the power of the algorithm in constructing the network structure and predicting the regulatory parameters. The method is used to evaluate interactions between genes in the SOS signaling pathway in Escherichia coli using gene expression data.


Asunto(s)
Evolución Biológica , Biología Computacional/estadística & datos numéricos , Ingeniería de Proteínas/métodos , Ingeniería de Proteínas/estadística & datos numéricos , Algoritmos , Biología Computacional/métodos , Escherichia coli/genética , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/estadística & datos numéricos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA