Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(32): 34754-34764, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39157072

RESUMEN

Snail flesh is a highly nutritious and easily digestible food commonly integrated into the human diet. In this study, snails belonging to the Helix aspersa Müller species were used to determine their chemical composition and evaluate the antioxidant and antibacterial activities of their flesh using successive maceration extractions with three solvents of different polarities. Biomolecules were analyzed spectrophotometrically, and their chemical compositions were determined by using gas chromatography coupled with mass spectroscopy. The antioxidant activity was assessed using three tests: DPPH, iron-reducing power test, and total antioxidant activity. The ethanol extract was found to be the most effective, with a high yield and high biomolecule content compared with other extracts. The extracts showed a significant amount of antioxidants, ranging from 3.14 to 7.04 mg AAE g-1 of dry matter, according to the total antioxidant activity assay. The DPPH scavenging capacity showed a reduction of the radical, with inhibitory concentrations ranging from 507.07 to 829.49 µg mL-1. In contrast, the iron-reducing power ranged from 67.98 to 424.74 µg mL-1. All of the strains studied responded favorably to the antimicrobial effects of H. aspersa extracts, with a zone of inhibition ranging from 8.48 to 15.53 mm. Additionally, at approximately 15 mg mL-1, the ethanolic extract had the lowest minimum inhibitory concentration against Pseudomonas aeruginosa. H. aspersa Müller flesh is rich in biomolecules with antioxidant and antibacterial activities, which could justify its use as a natural product and in therapeutic applications in the food industry.

2.
J Anal Methods Chem ; 2024: 5135565, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957570

RESUMEN

The extraction of gum from natural raw materials is of increasing importance in various industries, including food, pharmaceuticals, and cosmetics, particularly due to their emulsifying properties and potential applications as stabilizers and thickeners. This study presents an insight on the influence of changing parameters like reagents and operating condition on yield and some properties of the flax (Linum usitatissimum L.) seed gum. The extraction conditions were meticulously examined using a full factorial design, highlighting the significant impact of pretreatment, seed preparation, and solvent selection on the extraction yield. A response surface methodology (RSM) was then applied to optimize the water/benzoic acid ratio of the pretreatment step, the ethyl alcohol/water ratio, and the medium pH of the extraction method, resulting in a maximum yield of 14.47%. Furthermore, detailed analyses of the chemical and emulsifying properties of the gum were conducted showing emulsifying capacities over 94%, offering promising application prospects, particularly in the food industry.

3.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39065814

RESUMEN

This study investigates whether Andrographolide-loaded Lactose ß-Cyclodextrin (ALN-ßCD) nanoparticles enhance cognitive function, particularly spatial learning and memory. The successful conjugation of lactose to ß-cyclodextrin was confirmed via 1H NMR spectroscopy, facilitating neuronal cell entry. The solvent evaporation method was used to create the nanoparticles, which were characterised for particle size, PDI, zeta potential, and drug release. The nanoparticles exhibited a size of 247.9 ± 3.2 nm, a PDI of 0.5 ± 0.02, and a zeta potential of 26.8 ± 2.5 mV. FTIR and TEM analyses, along with in vitro drug release and BBB permeability studies, confirmed their stability and efficacy. Behavioural tests, including the Elevated Plus Maze, Y-Maze, Object Recognition, and Locomotor Activity tests, demonstrated significant improvements in memory, motor coordination, and exploration time in the nanoparticle-treated groups. The group treated with ALN-ßCD at a dose of 100 mg/kg/p.o. showed superior cognitive performance compared to the group receiving free andrographolides (AG). Biochemical assays indicated a significant reduction in acetylcholinesterase activity and lipid peroxidation, suggesting increased acetylcholine levels and reduced oxidative stress. Histopathological examination showed improved neuronal function without toxicity. The results showed significant improvements (p < 0.001) in memory and cognitive abilities in experimental animals, highlighting the potential of ALN-ßCD nanoparticles as a non-invasive treatment for memory loss. These promising findings warrant further exploration through clinical trials.

4.
Sci Rep ; 14(1): 16588, 2024 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025925

RESUMEN

Invasive fungal infections (IFI) pose a significant health burden, leading to high morbidity, mortality, and treatment costs. This study aims to develop and characterize nanomicelles for the codelivery of posaconazole and hemp seed oil for IFI via the oral route. The nanomicelles were prepared using a nanoprecipitation method and optimized through the Box Behnken design. The optimized nanomicelles resulted in satisfactory results for zeta potential, size, PDI, entrapment efficiency, TEM, and stability studies. FTIR and DSC results confirm the compatibility and amorphous state of the prepared nanomicelles. Confocal laser scanning microscopy showed that the optimized nanomicelles penetrated the tissue more deeply (44.9µm) than the suspension (25µm). The drug-loaded nanomicelles exhibited sustained cumulative drug release of 95.48 ± 3.27% for 24 h. The nanomicelles showed significant inhibition against Aspergillus niger and Candida albicans (22.4 ± 0.21 and 32.2 ± 0.46 mm, respectively). The pharmacokinetic study on Wistar rats exhibited a 1.8-fold increase in relative bioavailability for the nanomicelles compared to the suspension. These results confirm their therapeutic efficacy and lay the groundwork for future research and clinical applications, providing a promising synergistic antifungal nanomicelles approach for treating IFIs.


Asunto(s)
Antifúngicos , Aceites de Plantas , Animales , Antifúngicos/administración & dosificación , Antifúngicos/farmacocinética , Antifúngicos/farmacología , Antifúngicos/química , Ratas , Aceites de Plantas/química , Aceites de Plantas/farmacología , Aceites de Plantas/administración & dosificación , Triazoles/administración & dosificación , Triazoles/farmacocinética , Triazoles/química , Triazoles/farmacología , Nanopartículas/química , Ratas Wistar , Candida albicans/efectos de los fármacos , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Aspergillus niger/efectos de los fármacos , Micelas , Semillas/química , Liberación de Fármacos , Masculino , Portadores de Fármacos/química
5.
Saudi Pharm J ; 32(3): 101967, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38362039

RESUMEN

Phytotherapy, which involves the use of plant extracts and natural compounds for medicinal purposes, is indeed a promising alternative for managing urinary lithiasis. Many plants have been studied for their potential to prevent and treat kidney stones, and they may offer a more natural and potentially less harmful approach compared to conventional treatments. Additionally, phytotherapy may be more cost-effective. The aim of the present study was to investigate the antilithic potential of extracts and essential oils of Saussurea costus (Falc) Lipsch in two in vivo models, one on ethylene glycol-induced calcium oxalate crystal formation and the other to assess the effects of these extracts on magnesium oxide-induced struvite crystal formation. The experiment involved the administration of different doses of aqueous and ethanolic extracts of S. costus (200 and 400 mg/kg) and essential oils (25 and 50 mg/kg) to male Wistar rats, followed by the evaluation of various physiological, biochemical and histopathological parameters. The results demonstrated that the administration of S. costus essential oils and extracts had significant effects on the rats, influencing body weight, urine volume, crystal deposition, cytobacteriological examination of urine, and serum biochemical parameters. Histopathological examinations revealed varying impacts on the kidneys and livers of the treated rats. The findings suggest that S. costus extracts and essential oils may hold promise in inhibiting calcium oxalate crystal formation in vivo and influencing various physiological and biochemical parameters in rats. Overall, the 200 mg/kg ethanolic extract of S. costus demonstrated antilithiatic efficacy, did not exhibit signs of toxicity and reduced the number of crystals in the kidneys. Furthermore, the study did not find a significant effect on reducing struvite crystals.

6.
Saudi Pharm J ; 32(1): 101911, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38226346

RESUMEN

In recent years, there has been a focus on developing and discovering novel Bruton's tyrosine kinase (BTK) inhibitors, as they offer an effective treatment strategy for B-cell malignancies. BTK plays a crucial role in B cell receptor (BCR)-mediated activation and proliferation by regulating downstream factors such as the NF-κB and MAP kinase pathways. To address this challenge and propose potential therapeutic options for B-cell lymphomas, researchers conducted 2D-QSAR and ADMET studies on pyrrolopyrimidine derivatives that act as inhibitors of the BCR site in cytochrome b. These studies aim to improve and identify new compounds that could serve as more potent potential BTK inhibitors, which would lead to the identification of new drug candidates in this field. In our study, we used 2D-QSAR (multiple linear regression, multiple nonlinear regression, and artificial neural networks), molecular docking, molecular dynamics, and ADMET properties to investigate the potential of 35 pyrrolopyrimidine derivatives as BTK inhibitors. A molecular docking study and molecular dynamics simulations of molecule 13 over 10 ns revealed that it establishes multiple hydrogen bonds with several residues and exhibits frequent stability throughout the simulation period. Based on the results obtained by molecular modeling, we proposed six new compounds (Pred1, Pred2, Pred3, Pred4, Pred5, and Pred6) with highly significant predicted activity by MLR models. A study based on the in silico evaluation of the predicted ADMET properties of the new candidate molecules is strongly recommended to classify these molecules as promising candidates for new anticancer agents specifically designed to target Bruton's tyrosine kinase (BTK) inhibition.

7.
Saudi Pharm J ; 32(2): 101950, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38288131

RESUMEN

Detecting z-drugs, a sedative-hypnotic medication, is also misused for criminal activities. Therefore, the analysis of urine samples is crucial for clinical and forensic purposes. We conducted a study where we developed, validated, and compared an analytical method for simultaneously detecting z-drugs in urine samples. Our approach uses the QuEChERS method for sample preparation, combined with liquid chromatography (LC) and gas chromatography (GC) coupled with tandem mass spectrometry (MS/MS). We optimized the QuEChERS method to effectively extract z-drugs from urine samples while minimizing matrix effects and achieving high recovery rates. After extraction, we split the samples into two parts for analysis using LC-MS/MS and GC-MS/MS. We validated our methods, and the results showed good linearity over a broad concentration range (1-200 ng/mL) for each z-drug. The limits of detection and quantification were within clinically relevant ranges, ensuring sensitivity for detecting z-drugs in urine samples. We compared the two chromatographic techniques by analyzing a set of urine samples spiked with known concentrations of z-drugs using both LC-MS/MS and GC-MS/MS methods and then applied to the real samples. The results were statistically analyzed to assess any significant differences in accuracy and precision above 95 %, and both methods offered reliable and consistent results with the samples as well. In conclusion, our analytical method coupled with both LC-MS/MS and GC-MS/MS using the QuEChERS approach provides a comprehensive and robust solution for the simultaneous detection of z-drugs in urine samples. The choice between the two chromatographic techniques can be based on the specific z-drugs of interest and the required analytical performance. This method holds promise for applications in clinical toxicology, forensic analysis, and monitoring z-drug usage.

8.
Micromachines (Basel) ; 14(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38138323

RESUMEN

The study delves into the multifaceted potential of quercetin (Qu), a phytoconstituent found in various fruits, vegetables, and medicinal plants, in combination with silver nanoparticles (AgNPs). The research explores the synthesis and characterization of AgNPs loaded with Qu and investigates their pharmaceutical applications, particularly focusing on antibacterial properties. The study meticulously evaluates Qu's identity, and physicochemical properties, reaffirming its suitability for pharmaceutical use. The development of Qu-loaded AgNPs demonstrates their high drug entrapment efficiency, ideal particle characteristics, and controlled drug release kinetics, suggesting enhanced therapeutic efficacy and reduced side effects. Furthermore, the research examines the antibacterial activity of Qu in different solvents, revealing distinct outcomes. Qu, both in methanol and water formulations, exhibits antibacterial activity against Escherichia coli, with the methanol formulation displaying a slightly stronger efficacy. In conclusion, this study successfully synthesizes AgNPs loaded with Qu and highlights their potential as a potent antibacterial formulation. The findings underscore the influence of solvent choice on Qu's antibacterial properties and pave the way for further research and development in drug delivery systems and antimicrobial agents. This innovative approach holds promise for addressing microbial resistance and advancing pharmaceutical formulations for improved therapeutic outcomes.

9.
Gels ; 9(12)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38131959

RESUMEN

Psoriasis is a chronic inflammatory skin disease characterized by the hyperproliferation and aberrant differentiation of epidermal keratinocytes. It is a debilitating condition that can cause significant physical and emotional distress. Natural anti-psoriatic agents have been investigated as alternatives to conventional allopathic medications, as they have notable limitations and drawbacks. Curcumin and tea tree oil are cost-efficient and effective anti-inflammatory medicines with less adverse effects compared to synthetic psoriasis medications. Our research endeavors to harness the therapeutic potential of these natural compounds by developing an herbal anti-psoriatic topical drug delivery system. This novel method uses curcumin and tea tree oil to create a bi-phasic emulgel drug delivery system. Formulations F1 (gel) and F2 (emulgel) have high drug content percentages of 84.2% and 96.7%, respectively. The emulgel showed better spreadability for cutaneous applications, with a viscosity of 92,200 ± 943 cp compared to the gel's 56,200 ± 1725 cp. The emulgel released 94.48% of the drugs, compared to 87.58% for the gel. These formulations conform to the zero-order and Higuchi models, and their stability over a three-month period is crucial. In vivo, the emulgel healed psoriasis symptoms faster than the usual gel. The gathered results confirmed the emulgel's potential as a drug delivery method, emphasizing the complementary benefits of tea tree oil and curcumin as an effective new therapy for psoriasis.

10.
Saudi Pharm J ; 31(12): 101879, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38192283

RESUMEN

Pulicaria arabica has been traditionally utilized in folk medicine for various purposes such as ulcer treatments as well as antidiarrheal agent. Herein, the chemical profiles of Pulicaria arabica essential oils (PAEOs) and the in vitro antiproliferative effect of PAEOs were investigated. Hydrodistillation was employed to prepare PAEOs which were then characterized by GC/MS, while the antiproliferative effects were investigated by MTT assay as well as flow cytometric and RT-PCR analysis. Sixty-four (99.99 %) constituents were recognized from PAEOs. Carvotanacetone (36.97 %), (-)-carvomenthone (27.20 %) and benzene, 2-(1,1-dimethylethyl)-1,4-dimethoxy- (6.92 %) were the main components. PAEOs displayed IC50 values ranging from 30 to 50 µg/mL. DNA content analysis revealed that A549 cells exposed to PAEOs exhibited an increase in G1 cells population. The flow cytometry analysis results also showed that the PAEOs antiproliferative effect was mediated via apoptosis induction. Furthermore, a modulation in the pro-apoptotic markers (caspase-3 and Bax) and anti-apoptotic (Bcl-2) was also observed. In conclusion, PAEOs exhibited a moderate anti-proliferative effect on A549 cells through modulating the cell cycle progression and apoptosis initiation. These findings could offer a potential therapeutic use of PAEOs in lung cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA