Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(5): 2289-2294, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38164662

RESUMEN

Control of the optical properties of a nanoparticle (NP) through its structural changes underlies optical data processing, dynamic coloring, and smart sensing at the nanometer scale. Here, we report on the concept of controlling the light scattering by a NP through mixing of weakly miscible chemical elements (Fe and Au), supporting a thermal-induced phase transformation. The transformation corresponds to the transition from a homogeneous metastable solid solution phase of the (Fe,Au) NP towards an equilibrium biphasic Janus-type NP. We demonstrate that the phase transformation is thermally activated by laser heating up to a threshold of 800 °C (for NPs with a size of hundreds of nm), leading to the associated changes in the light scattering and color of the NP. The results thereby pave the way for the implementation of optical sensors triggered by a high temperature at the nanometer scale via NPs based on metal alloys.

2.
Mater Horiz ; 11(2): 460-467, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37964760

RESUMEN

Green and digital transitions will induce tremendous demand for metals and semiconductors. This raises concerns about the availability of materials in the rather near future. Addressing this challenge requires an unprecedented effort to discover new materials that are more sustainable and also to expand their functionalities beyond conventional material limits. From this point of view, complex systems combining semiconductor and magnetic properties in a single material lay the foundations for future nanoelectronics devices. Through a combination of out-of-stable equilibrium processes, we achieved fine control over the crystallisation of non-stoichiometric MnSix (x = 0.92). The Curie temperature shows non-monotonous evolution with crystallisation. At the earliest and final stages, the Curie temperature is comparable with stoichiometric MnSi (TC = 30 K). At the intermediate stage, while the material is crystalline and remains non-stoichiometric, a remarkable fivefold increase in Curie temperature (TC = 150 K) is observed. This finding highlights the potential for controlling the metastability of materials as a promising and relatively unexplored pathway to enhance material properties, without relying on critical materials such as rare earth elements.

3.
Inorg Chem ; 61(35): 13992-14003, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36001002

RESUMEN

Metal-organic frameworks (MOFs) have been recently explored as crystalline solids for conversion into amorphous phases demonstrating non-specific mechanical, catalytic, and optical properties. The real-time control of such structural transformations and their outcomes still remain a challenge. Here, we use in situ high-resolution transmission electron microscopy with 0.01 s time resolution to explore non-thermal (electron induced) amorphization of a MOF single crystal, followed by transformation into an amorphous nanomaterial. By comparing a series of M-BTC (M: Fe3+, Co3+, Co2+, Ni2+, and Cu2+; BTC: 1,3,5-benzentricarboxylic acid), we demonstrate that the topology of a metal cluster of the parent MOFs determines the rate of formation and the chemistry of the resulting phases containing an intact ligand and metal or metal oxide nanoparticles. Confocal Raman and photoluminescence spectroscopies further confirm the integrity of the BTC ligand and coordination bond breaking, while high-resolution imaging with chemical and structural analysis over time allows for tracking the dynamics of solid-to-solid transformations. The revealed relationship between the initial and resulting structures and the stability of the obtained phase and its photoluminescence over time contribute to the design of new amorphous MOF-based optical nanomaterials.

4.
Molecules ; 26(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34885986

RESUMEN

Time-resolved optical emission spectroscopy of nanosecond-pulsed discharges ignited in liquid nitrogen between two bismuth electrodes is used to determine the main discharge parameters (electron temperature, electron density and optical thickness). Nineteen lines belonging to the Bi I system and seven to the Bi II system could be recorded by directly plunging the optical fibre into the liquid in close vicinity to the discharge. The lack of data for the Stark parameters to evaluate the broadening of the Bi I lines was solved by taking advantage of the time-resolved information supported by each line to determine them. The electron density was found to decrease exponentially from 6.5 ± 1.5 × 1016 cm-3 200 ns after ignition to 1.0 ± 0.5 × 1016 cm-3 after 1050 ns. The electron temperature was found to be 0.35 eV, close to the value given by Saha's equation.

5.
Angew Chem Int Ed Engl ; 59(36): 15522-15526, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32339393

RESUMEN

We demonstrate herein an all-optical switch based on stimuli-responsive and photochromic-free metal-organic framework (HKUST-1). Ultrafast near-infrared laser pulses stimulate a reversible 0.4 eV blue shift of the absorption band with up to 200 s-1 rate due to dehydration and concomitant shrinking of the structure-forming [Cu2 C4 O8 ] cages of HKUST-1. Such light-induced switching enables the remote modulation of intensities of photoluminescence of single crystals of HKUST-1 as well visible radiation passing through the crystal by 2 order of magnitude. This opens up the possibility of utilyzing stimuli-responsive MOFs for all-optical data processing devices.

6.
Biomater Sci ; 8(4): 1137-1147, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31584052

RESUMEN

Synthetic organic and inorganic carriers often have limitations associated with problematic targeting ability or non-optimized pharmacokinetics, and, therefore, they have restricted therapeutic potential. Natural drug carriers (e.g. mesenchymal stem cells, MSCs) are able to migrate towards the tumor site and penetrate cancerous cells. These biomimetic features make MSCs an attractive delivery platform that allows achieving maximal therapeutic efficiency with minimal toxic side effects. A combination of MSCs exhibiting a homing effect on tumors with stimuli-responsive nanostructured carriers is foreseen to have a huge impact in the field of personalized oncology. Here we develop for the first time a light-sensitive biomimetic delivery platform based on MSCs impregnated with submicron sized composite capsules containing an antitumor drug. This cell-based delivery system triggers the release of the drug upon near-infrared (NIR) laser irradiation due to gold nanorods (Au NRs) incorporated into the capsule wall. The NIR-triggered release of the antitumor drug such as vincristine leads to the effective mortality of tumor spheroids made of primary melanoma cells. Encapsulated vincristine delivered by MSCs into the tumor spheroids and deployed over the whole spheroid upon NIR exposure represents a promising therapy for the improved treatment of malignant neoplasms.


Asunto(s)
Biomimética/métodos , Melanoma/terapia , Células Madre Mesenquimatosas/citología , Esferoides Celulares/citología , Vincristina/farmacología , Cápsulas , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Oro/química , Humanos , Luz , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Nanotubos , Tamaño de la Partícula , Cultivo Primario de Células , Esferoides Celulares/efectos de los fármacos , Células Tumorales Cultivadas , Vincristina/química
7.
Adv Sci (Weinh) ; 6(17): 1900506, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31508274

RESUMEN

Owing to the synergistic combination of a hybrid organic-inorganic nature and a chemically active porous structure, metal-organic frameworks have emerged as a new class of crystalline materials. The current trend in the chemical industry is to utilize such crystals as flexible hosting elements for applications as diverse as gas and energy storage, filtration, catalysis, and sensing. From the physical point of view, metal-organic frameworks are considered molecular crystals with hierarchical structures providing the structure-related physical properties crucial for future applications of energy transfer, data processing and storage, high-energy physics, and light manipulation. Here, the perspectives of metal-organic frameworks as a new family of functional materials in modern physics are discussed: from porous metals and superconductors, topological insulators, and classical and quantum memory elements, to optical superstructures, materials for particle physics, and even molecular scale mechanical metamaterials. Based on complementary properties of crystallinity, softness, organic-inorganic nature, and complex hierarchy, a description of how such artificial materials have extended their impact on applied physics to become the mainstream in material science is offered.

8.
Nanoscale ; 11(27): 13161, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31243404

RESUMEN

Correction for 'Laser printing of optically resonant hollow crystalline carbon nanostructures from 1D and 2D metal-organic frameworks' by Leila R. Mingabudinova et al., Nanoscale, 2019, 11, 10155-10159.

9.
Nanoscale ; 11(21): 10155-10159, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31038502

RESUMEN

Using a hybrid approach involving a slow diffusion method to synthesize 1D and 2D MOFs followed by their treatment with femtosecond infrared laser radiation, we generated 100-600 nm well-defined hollow spheres and hemispheres of graphite. This ultra-fast technique extends the library of shapes of crystalline MOF derivatives appropriate for all-dielectric nanophotonics.

10.
Chemphyschem ; 20(5): 719-726, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30629795

RESUMEN

Here, we study the stress-induced self-organization of Mg2+ and Ni2+ cations in the crystal structure of multiwalled (Mg1-x ,Nix )3 Si2 O5 (OH)4 phyllosilicate nanoscrolls. The phyllosilicate layer strives to compensate size and surface energy difference between the metal oxide and silica sheets by curling. But as soon as the layer grows, the scrolling mechanism becomes a spent force. An energy model proposes secondary compensation of strain: two cations distribute along the nanoscroll spiral in accordance with preferable radii of curvature. To reveal this, we study synthetic (Mg1-x ,Nix )3 Si2 O5 (OH)4 nanoscrolls by the scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy (STEM/EDS) technique. For a number of scrolls, we have found indeed a change of Ni concentration with increase in distance from the nanoscroll central axis. The concentration gradient, according to our estimates, can reach 50 at.% over 25 nm of the wall thickness.

11.
Langmuir ; 32(5): 1405-9, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26752107

RESUMEN

Controlling microdischarges in plasma electrolytic oxidation is of great importance in order to optimize coating quality. The present study highlights the relationship between the polarity at which breakdown occurs and the electrolyte pH as compared with the isoelectric point (IEP). It is found that working at a pH higher than the IEP of the grown oxide prevents the buildup of detrimental cathodic discharges. The addition of phosphates results in a shift in the IEP to a lower value and therefore promotes anodic discharges at the expense of cathodic ones.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...