Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4336, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38383699

RESUMEN

Materials informatics in the development of organic light-emitting diode (OLED) related materials have been performed and exhibited the effectiveness for finding promising compounds with a desired property. However, the molecular structure optimization of the promising compounds through the conventional approach, namely the fine-tuning of molecules, still involves a significant amount of trial and error. This is because it is challenging to endow a single molecule with all the properties required for practical applications. The present work focused on fine-tuning triazine-based electron-transport materials using machine learning (ML) techniques. The prediction models based on localized datasets containing only triazine derivatives showed high prediction accuracy. The descriptors from density functional theory calculations enhanced the prediction of the glass transition temperature. The proposed multistep virtual screening approach extracted the promising triazine derivatives with the coexistence of higher electron mobility and glass transition temperature. Nine selected triazine compounds from 3,670,000 of the initial search space were synthesized and used as the electron transport layer for practical OLED devices. Their observed properties matched the predicted properties, and they enhanced the current efficiency and lifetime of the device. This paper provides a successful model for the ML assisted fine-tuning that effectively accelerates the development of practical materials.

2.
Inorg Chem ; 62(24): 9291-9294, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37272850

RESUMEN

The two homochiral AgIRhIII nanoclusters, Δ6/Λ6-[Ag11S{Rh(apt)3}6]9+ ([1]9+) and Δ6/Λ6-[Ag13S{Rh(apt)3}6]11+ ([2]11+), in which Ag11S and Ag13S cluster cores, respectively, are protected by fac-[Rh(apt)3] metalloligands, were newly synthesized from fac-[Rh(apt)3] (Hapt = 3-aminopropanethiol) and Ag+ in water in combination with sulfide sources. While [1]9+ was produced by using d-penicillamine as a sulfide source, the use of HS- as a sulfide source afforded [2]11+ without causing any precipitation of Ag2S. Cluster [1]9+ was convertible to [2]11+ via the reaction with Ag+, which led to a turn-on-type switch in photoluminescence from nonemissive [1]9+ to emissive [2]11+.

3.
Dalton Trans ; 52(2): 260-268, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36374017

RESUMEN

A series of amphiphilic salen complexes, [L1a,bM] and [L2a,bM], were designed and synthesized. These complexes consist of two or four hydrophilic triethylene glycol (TEG) chains and a hydrophobic π-extended metallosalen core based on naphthalene or phenanthrene. The obtained amphiphilic complexes, [L1bM] (M = Ni, Cu, Zn), formed a monolayer at the air-water interface, while the monocationic [L1bCo(MeNH2)2](OTf) did not form a well-defined monolayer. The number of hydrophilic TEG chains also had an influence on the monolayerformation behavior; the tetra-TEG derivatives, [L1bNi] and [L2bNi], showed a pressure rise at a less compressed region than the bis-TEG derivatives, [L1aNi] and [L2aNi]. In addition, the investigation of their compressibility and compression modulus suggested that the tetra-TEG derivatives, [L1bNi] and [L2bNi], are more flexible than the corresponding bis-TEG analogues, [L1aNi] and [L2aNi], and that the phenanthrene derivatives [L1a,bNi] were more rigid than the corresponding naphthalene analogues, [L2a,bNi]. The Langmuir-Blodgett (LB) films of one of the complexes, [L1bNi], showed CD spectra slightly different from that in solution, which may originate from the unique anisotropic environment of the air-water interface. Thus, we demonstrated the possibility of controlling the chiroptical properties of metal complexes by mechanical compression.


Asunto(s)
Polietilenglicoles , Agua , Agua/química , Conformación Molecular
4.
IEEE Trans Vis Comput Graph ; 17(11): 1690-701, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21173452

RESUMEN

We developed an autostereoscopic display for distant viewing of 3D computer graphics (CG) images without using special viewing glasses or tracking devices. The images are created by employing referential viewing area-based CG image generation and pixel distribution algorithm for integral photography (IP) and integral videography (IV) imaging. CG image rendering is used to generate IP/IV elemental images. The images can be viewed from each viewpoint within a referential viewing area and the elemental images are reconstructed from rendered CG images by pixel redistribution and compensation method. The elemental images are projected onto a screen that is placed at the same referential viewing distance from the lens array as in the image rendering. Photographic film is used to record the elemental images through each lens. The method enables 3D images with a long visualization depth to be viewed from relatively long distances without any apparent influence from deviated or distorted lenses in the array. We succeeded in creating an actual autostereoscopic images with an image depth of several meters in front of and behind the display that appear to have 3D even when viewed from a distance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...